Измеритель эпс приставка к мультиметру с глибин. Измеритель эквивалентного последовательного сопротивления электролитических конденсаторов


Эквивалентное последовательное сопротивление (ЭПС или ESR) конденсатора является его важнейшим параметром и в значительной мере определяет его фильтрующие и сглаживающие свойства. Нередко причиной неработоспособности различных устройств является повышенное значение ЭПС примененных в них конденсаторов. Особенно нестабилен этот параметр у оксидных конденсаторов. Он может существенно изменяться в сторону увеличения с течением времени или с изменением температуры. В предлагаемой статье приводится описание еще одного измерителя ЭПС.
Особенность устройства в том, что собрано оно на основе малогабаритного стрелочного мультиметра Sanwa YX-1000A (рис. 1). От него использованы корпус, стрелочный прибор, а также шкала омметра этого прибора, что упрощает изготовление всей конструкции. Интервал измерения составляет от 0 до 100 Ом. Источник питания — гальванический элемент напряжением 1,5 В типоразмера АА, потребляемый ток — 5...7 мА, работоспособность сохраняется при снижении напряжения питания до 1,3 В. Переменное напряжение на щупах составляет 130...150 мВ (в зависимости от напряжения питания), поэтому измеритель позволяет проводить проверку оксидных конденсаторов, не выпаивая их из ремонтируемого устройства.

Схема устройства показана на рис. 2. На трансформаторе Т1 и транзисторах VT1, VT2 собран генератор прямоугольных импульсов с частотой следования около 116 кГц. Обмотка II обеспечивает положительную обратную связь. Подстроечным резистором R2 можно изменять скважность импульсов, добиваясь их симметричности. Это важно, поскольку скважность влияет на потребляемый устройством ток. С обмотки III прямоугольные импульсы поступают в измерительную цепь, состоящую из щупов ХР1, ХР2, которые подключают к измеряемому конденсатору, и резистора R4, который выполняет функции датчика тока. На транзисторной сборке VT3 собран синхронный выпрямитель, управляющие импульсы на него поступают с коллекторов транзисторов VT1 и VT2, резисторы R5—R7 — токоограничивающие, конденсаторы СЗ, С4 сглаживают выпрямленное напряжение. Благодаря применению синхронного выпрямителя удалось получить высокую чувствительность и малые потери выпрямляемого напряжения, что, в свою очередь, позволило использовать в качестве источника питания один гальванический элемент. К выходу выпрямителя подключен стрелочный прибор РА1, переменный резистор R8 — калибровочный.

При подключении щупов к проверяемому конденсатору напряжение на резисторе R4 зависит от ЭПС конденсатора — чем больше ЭПС, тем меньше напряжение и тем меньшее отклонение стрелки прибора РА1. Если проверяемый конденсатор был заряжен, ток разрядки ограничит резистор R4, а nдиоды VD1 и VD2 защитят транзисторную сборку VT3. Поскольку сопротивление рамки микроамперметра в несколько раз больше введенного сопротивления резистора R8, а намотана она медным проводом, при изменении температуры окружающей среды ток через нее даже при постоянном напряжении изменяется. Поэтому в устройство введен калибровочный резистор R8, с помощью которого при замкнутых щупах стрелку прибора устанавливают на "0" шкалы. Калибровка необходима также по мере разрядки батареи питания. В качестве основы для конструкции измерителя применен стрелочный мультиметр SanwaYX-1000A. Использованы корпус и стрелочный прибор — микроамперметр, который имеет сопротивление рамки 876 Ом, ток максимального отклонения стрелки — 146 мкА, а напряжение на нем при максимальном токе — 130 мВ. Остальные детали смонтированы на печатной плате, чертеж которой показан на рис. 3. Она изготовлена из односторонне фольгированного стеклотекстолита.

Применены постоянные резисторы С2-23, подстроечный — СПЗ-3, переменный — СП4-1, конденсатор С2 — КТ-2 с ТКЕ не хуже М75, поскольку этот конденсатор влияет на стабильность генерируемой частоты, остальные — К10-17. Транзисторы KSA539 можно заменить на транзисторы серии КТ3107 с индексами Б, Г и Е, их желательно подобрать с близкими коэффициентами передачи тока. Транзисторную сборку заменять отдельными транзисторами не рекомендуется, поскольку это потребует их тщательной подборки.
Трансформатор намотан на кольцевом ферритовом магнитопроводе проницаемостью 1000 с внешним диаметром 10, внутренним 6 и толщиной 5 мм. Перед намоткой края сглаживают наждачной бумагой или надфилем. Обмотки I и II наматывают одновременно тремя свитыми вместе обмоточными проводами ПЭВ или ПЭЛ диаметром 0,1 мм. Намотав 50 витков, два провода соединяют в соответствии со схемой — так образуется обмотка I. Обмотку III наматывают проводом ПЭВ-2 диаметром 0,3...0,4 мм и содержит она 5 витков. Фазировка этой обмотки может быть любой и повлияет только на полярность подключения микроамперметра РА1 (полярность на схеме показана условно). Все обмотки надо распределить на магнитопроводе равномерно. В отверстие трансформатора плотно вставлен отрезок трубки из ПХВ, длиной немного больше толщины намотанного трансформатора. Из толстой (1 мм) мягкой пластмассы вырезаны две шайбы диаметром 10... 12 мм, между которыми трансформатор с небольшим усилием крепят на плате с помощью винта МЗ, а гайку фиксируют термоклеем.
С платы мультиметра удалили все детали, после чего она была использована как трафарет для изготовления новой печатной платы. Резистор R8 и выключатель питания SA1 закреплены на боковых стенках корпуса с помощью термоклея (рис. 4). Выключатель применен импортный малогабаритный движковый и установлен в прорезь в корпусе, предназначенную для движка подстроечного резистора установки нуля омметра. Для движка резистора R8 сделано отверстие. Переключатель пределов измерения мультиметра удален, а образовавшееся отверстие заклеено прямоугольной пластиной из тонкого стеклотекстолита. Провода для щупов применены от компьютерного блока питания, к их концам припаяны две длинные булавки с головками, а несколько миллиметров изоляции проводов закреплены на булавках нитками и пропитаны универсальным клеем. Как показала практика, такая конструкция щупов оказалась достаточно удобной.

Налаживание начинают с установки минимального потребляемого тока по цепи питания. Для этого последовательно с элементом питания включают амперметр (щупы ХР1 и ХР2 при этом должны быть разомкнуты) и подстроечным резистором R2 устанавливают минимальный потребляемый ток. Затем при замкнутых щупах переменным резистором R8 устанавливают стрелку прибора на "0" шкалы (крайнее правое положение). Подключая к щупам резисторы с известным сопротивлением (от единиц до десятков ом), проверяют соответствие показаний прибора и сопротивления резисторов. При необходимости подбирают резистор R4. Если показания прибора больше, устанавливают резистор с большим сопротивлением, и наоборот. В связи с тем что использована штатная шкала мультиметра, точность на различных ее участках будет разной, поэтому необходимо выбрать, какое из показаний должно быть наиболее точным. Исходя из этого, к щупам подключают резистор с таким сопротивлением и подборкой резистора R4 устанавливают стрелку прибора на отметку, соответствующую этому сопротивлению. По мнению автора, такое сопротивление может быть 5...6 Ом.
В процессе эксплуатации устройства проявился один эффект, связанный с конструкцией стрелочного прибора. На его защитном стекле скапливается заряд статического электричества, способный остановить стрелку в произвольном месте, сделав тем самым дальнейшую работу устройства практически невозможной. Для устранения этого эффекта была проведена доработка. Если шкала закреплена неровно и имеются выпуклости, ее снимают, распрямляют и плотно приклеивают на свое место минимальным количеством клея. Стрелку аккуратно подгибают так, чтобы она перемещалась на минимальном расстоянии от шкалы и, следовательно, на максимальном от защитного стекла. Полезно также установить ограничители хода стрелки, изготовленные из эмалированного медного провода толщиной 0,2...0,4 мм, которые закрепляют с двух сторон под винты крепления шкалы.
При измерении ЭПС конденсаторов следует соблюдать определенную осторожность, поскольку существует вероятность поражения электрическим током заряженного конденсатора!

А. МУЛЫНДИН, г. Алма-Ата, Казахстан

Мы уже привыкли к основным параметрам конденсатора: ёмкости и рабочему напряжению. Но в последнее время не менее важным параметром стало его эквивалентное последовательное сопротивление (ЭПС). Что же это такое и на что оно влияет?

Так как ЭПС наиболее сильно влияет на работу электролитических конденсаторов, то в дальнейшем речь пойдёт именно о них. Сейчас мы разберём электролитический конденсатор по косточкам и узнаем, какие же тайны он скрывает.

Любой электронный компонент не идеален. Это относится и к конденсатору. Совокупность его свойств показывает условная схема.

Как видим, реальный конденсатор состоит из ёмкости C , которую мы привыкли видеть на схемах в виде двух вертикальных полос. Далее резистор R s , который символизирует активное сопротивление проволочных выводов и контактного сопротивления вывод - обкладка. На фото видно, как проволочные выводы крепятся к обкладкам методом заклёпочного соединения.

Так как любой, даже очень хороший диэлектрик имеет определённое сопротивление (до сотен мегаом), то параллельно обкладкам изображается резистор Rp . Именно через этот «виртуальный» резистор течёт так называемый ток утечки. Естественно, никаких резисторов внутри конденсатора нет. Это лишь для наглядности и удобного представления.

Из-за того, что обкладки у электролитического конденсатора скручиваются и устанавливаются в алюминиевый корпус, образуется индуктивность L .

Свои свойства эта индуктивность проявляет лишь на частотах выше резонансной частоты конденсатора. Приблизительное значение этой индуктивности - десятки наногенри.

Итак, из всего этого выделим то, что входит в ЭПС электролитического конденсатора:

    Сопротивление, которое вызвано потерями в диэлектрике из-за его неоднородности, примесей и наличия влаги;

    Омическое сопротивление проволочных выводов и обкладок. Активное сопротивление проводов;

    Контактное сопротивление между обкладками и выводами;

    Сюда же можно включить и сопротивление электролита, которое увеличивается из-за испарения растворителя электролита и изменения его химического состава вследствие взаимодействия его с металлическими обкладками.

Все эти факторы суммируются и образуют сопротивление конденсатора, которое и назвали эквивалентным последовательным сопротивлением - сокращённо ЭПС, а на зарубежный манер ESR (E quivalent S erial R esistance).

Как известно, электролитический конденсатор в силу своего устройства может работать только в цепях постоянного и пульсирующего тока из-за своей полярности. Собственно, его и применяют в блоках питания для фильтрации пульсаций после выпрямителя. Запомним эту особенность конденсатора - пропускать импульсы тока.

А если ESR - это, по сути, сопротивление, то на нём при протекании импульсов тока будет выделятся тепло. Вспомните о мощности резистора . Таким образом, чем больше ЭПС - тем сильнее будет греться конденсатор.

Нагрев электролитического конденсатора - это очень плохо. Из-за нагрева электролит начинает закипать и испаряться, конденсатор вздувается. Наверное, уже замечали на электролитических конденсаторах защитную насечку на верхней части корпуса.

При длительной работе конденсатора и повышенной температуре внутри его электролит начинает испаряться, и давить на эту насечку. Со временем давление внутри возрастает настолько, что насечка разрывается, высвобождая газ наружу.


"Хлопнувший" конденсатор на плате блока питания (причина - превышение допустимого напряжения)

Также защитная насечка предотвращает (или ослабляет) взрыв конденсатора при превышении допустимого напряжения или изменении его полярности.

На практике бывает и наоборот - давление выталкивает изолятор со стороны выводов. Далее на фото показан конденсатор, который высох. Ёмкость его снизилась до 106 мкФ, а ESR при измерении составило 2,8Ω, тогда как нормальное значение ESR для нового конденсатора с такой же ёмкостью лежит в пределах 0,08 - 0,1Ω.

Электролитические конденсаторы выпускают на разную рабочую температуру. У алюминиевых электролитических конденсаторов нижняя граница температуры начинается с - 60 0 С, а верхняя ограничена +155 0 С. Но в большинстве своём такие конденсаторы рассчитаны на работу в температурном диапазоне от -25 0 С до 85 0 С и от -25 0 С до 105 0 С. На этикетке иногда указывается только верхний температурный предел: +85 0 С или +105 0 С.

Наличие ЭПС в реальном электролитическом конденсаторе влияет на его работу в высокочастотных схемах. И если для обычных конденсаторов это влияние не столь выражено, то вот для электролитических конденсаторов оно играет весьма важную роль. Особенно это касается их работы в цепях с высоким уровнем пульсаций, когда протекает существенный ток и за счёт ESR выделяется тепло.

Взгляните на фото.


Вздувшиеся электролитические конденсаторы (причина - длительная работа при повышенной температуре)

Это материнская плата персонального компьютера, который перестал включаться. Как видим, на печатной плате рядом с радиатором процессора расположено четыре вздувшихся электролитических конденсатора. Длительная работа при повышенной температуре (внешний нагрев от радиатора) и приличный срок эксплуатации привёл к тому, что конденсаторы «хлопнули». Виной тому - нагрев и ESR. Плохое охлаждение отрицательно сказывается не только на работе процессоров и микросхем, но, как оказывается, и на электролитических конденсаторах!

Снижение температуры окружающей среды на 10 0 C продлевает срок службы электролитического конденсатора почти вдвое.

Аналогичная картина наблюдается в отказавших блоках питания ПК - электролитические конденсаторы также вздуваются, что приводит к просадке и пульсациям напряжения питания.


Неисправные конденсаторы в БП ПК ATX (причина - низкое качество конденсаторов)

Нередко из-за длительной работы импульсные блоки питания точек доступа, роутеров Wi-Fi, всевозможных модемов также выходят из строя по причине «хлопнувших» или потерявших ёмкость конденсаторов. Не будем забывать, что при нагреве электролит высыхает, а это приводит к снижению ёмкости. Пример из практики я описывал .

Из всего сказанного следует, что электролитические конденсаторы, работающие в высокочастотных импульсных схемах (блоки питания, инверторы, преобразователи, импульсные стабилизаторы) работают в довольно экстремальных условиях и выходят из строя чаще. Зная это производители выпускают специальные серии с низким ESR. На таких конденсаторах, как правило, присутствует надпись Low ESR , что означает "низкое ЭПС".

Известно, что конденсатор обладает ёмкостным или реактивным сопротивлением, которое снижается с ростом частоты переменного тока.

Таким образом, с ростом частоты переменного тока, реактивное сопротивление конденсатора будет падать, но только до тех пор, пока оно не приблизится к величине эквивалентного последовательного сопротивления (ESR). Его то и необходимо измерить. Поэтому многие приборы - измерители ESR (ESR-метры) измеряют ЭПС на частотах в несколько десятков - сотен килогерц. Это необходимо для того, чтобы «убрать» величину реактивного сопротивления из результатов измерения.

Стоит отметить, что на величину ESR конденсатора влияет не только частота пульсаций тока, но и напряжение на обкладках, температура окружающей среды, качество изготовления. Поэтому однозначно сказать, что ESR конденсатора, например, равно 3 омам, нельзя. На разной рабочей частоте величина ESR будет разной.

ESR-метр

При проверке конденсаторов , особенно электролитических, стоит обращать внимание на величину ESR. Для тестирования конденсаторов и измерения ESR существует немало серийно выпускаемых приборов. На фото универсальный тестер радиокомпонентов (LCR-T4 Tester) функционал которого поддерживает замер ESR конденсаторов.

В радиотехнических журналах можно встретить описания самодельных приборов и приставок к мультиметрам для измерения ESR. В продаже можно найти и узкоспециализированные ESR-метры, которые способны измерять ёмкость и ЭПС без выпайки их из платы, а также разряжать их перед этим с целью защиты прибора от повреждения высоким остаточным напряжением конденсатора. К таким приборам относятся, например, такие как ESR-micro v3.1, ESR-micro V4.0s, ESR-micro v4.0SI.

При ремонте электроники приходится часто менять электролитические конденсаторы. При этом для оценки их качества измеряются такие параметры, как ёмкость и ESR. Чтобы было с чем сравнивать, была составлена таблица ESR , в которой указано ЭПС новых электролитических конденсаторов разных ёмкостей. Данную таблицу можно использовать для оценки пригодности того или иного конденсатора для дальнейшей службы.

В настоящее время всё большее число бытовых и промышленных приборов оснащаются импульсными источниками питания, надёжная и долговечная работа которых напрямую связана с качеством применяемых электролитических конденсаторов, главным показателем которых является эквивалентное последовательное сопротивление. Предлагаемое устройство позволит с большой точностью определить значение ЭПС конденсатора, что поможет не только ускорить ремонт радиоаппаратуры, но и выбрать конденсаторы с подходящими параметрами для самодельных конструкций.

Измеритель представляет собой приставку к вольтметру. Измеряемое сопротивление в 0,001 Ом преобразуется на выходе устройства в напряжение 0,1 мВ. Ёмкость проверяемого конденсатора – от 10 мкф, при меньших значениях ёмкости ухудшается точность измерения. Максимальное измеряемое значение ЭПС – 10 Ом. Ниже изображена схема измерителя.

Процессом измерения управляет счётчик-дешифратор DD1. На таймере DA2 собран генератор, номиналы элементов которого R3, R4, C2 рассчитаны таким образом, чтобы на выходах «0»…«9» DD1 формировались импульсы (такты) длительностью около 10 мкс. Полный цикл измерения составляет 100 мкс и изображён на рисунке ниже. (На осциллограмме представлен процесс измерения ЭПС конденсатора ёмкостью в 22 мкф, для наглядности последовательно с ним соединён резистор 1 Ом. Развёртка 10 мкс, 10 мВ, осциллограф С1-73.)

Выводы «9», «0», «1», «2», «3» DD1 объединены через диоды VD3, VD7, VD4, VD8, VD6 по схеме логического «или» и управляют работой ключа VT2…VT4. Ключ необходим для разряда проверяемого конденсатора. На четвёртом такте транзистор VT4 закрывается, и проверяемый конденсатор начинает заряжаться от источника стабильного тока 10 мА, который формирует стабилизатор DA7. Точное значение тока принципиального значения не имеет – его отклонение в пределах +-0,5 от 10 мА будет скомпенсировано при регулировке устройства. В момент отключения ключа происходит скачкообразное увеличение напряжения на конденсаторе (на графике – «ЭПС»), величина которого определяется как Rэпс*Iзар. После скачка, напряжение на конденсаторе плавно растёт, и к концу пятого такта достигает значения Ucap=(Iзар*t)/C+ Rэпс*Iзар, где t- время заряда конденсатора (20 мкс), С - его ёмкость. На пятом такте ключ DA5.2 открывается высоким логическим уровнем, поступаемого с выв. 1 DD1, и напряжение на исследуемом конденсаторе, равное Rэпс*Iзар + (Iзар*t)/C, запоминается на конденсаторе С11. Следующие 3 такта, поступающие с выв. 5,6,9 DD1 через диоды VD10, VD5, VD9 на ключ VT1 отключают источник стабильного тока. В этот момент времени напряжение на проверяемом конденсаторе соответствует значению Ucap=(Iзар*t)/C. Седьмой такт DD1 открывает ключ DA5.1, сохраняя это значение на конденсаторе С10. На ОУ DA4, DA6 собран дифференциальный усилитель. Он вычитает напряжение, сохранённое на конденсаторе С10 из напряжения, сохранённого на конденсаторе С11, выделяя тем самым напряжение, падающее на ЭПС проверяемого конденсатора: (Rэпс*Iзар + (Iзар*t)/C) - (Iзар*t)/C = Rэпс*Iзар. Разность напряжений умножается дифференциальным усилителем на 10, и для значения зарядного тока 10 мА ЭПС проверяемого конденсатора будет определяться Rэпс = (Uэпс/0,01 А)*10, т.е. 0,1 мВ на выходе DA6 будет соответствовать сопротивлению в 0,001 Ом.

Отрицательное напряжение для питания ОУ DA4, DA6 формируют элементы DA1, DA3. Диоды VD11, VD12 ограничивают напряжение холостого хода на щупах, а также защищают измерительные цепи от предварительно заряженных конденсатор. Для компенсации конечного сопротивления проводов измерительных щупов применяется четырёхпроводная схема измерения.

На рисунках ниже приведены чертежи печатной платы («под утюг») и схемы расположения элементов на ней.

Регулировку устройства начинают с установки нулевого напряжения на выходе DA6 (выв.6) подстройкой сопротивления резистора R6 при закороченных измерительных щупах. Далее, к измерительным щупам устройства подключается эталонное сопротивление. Его значение может лежать в пределах от 10ти до 1го ома. Подстройкой резистором R9 необходимо добиться показаний, соответствующих эталонному сопротивлению. Например, вольтметр на пределе 200 мВ для сопротивления в 1 ом должен показывать значение 100,0 мВ. На этом настройка заканчивается. Фото собранного измерителя приведено ниже.

Применяемые ОУ DA4 AD823 и DA6 AD711 недёшевы – но такова плата за точность и стабильность измерений. Тем не менее, их можно заменить на более доступные TL072/082 и TL071/081 соответственно. Разумеется в ущерб точности измерения. Конденсаторы C1, C2, C10…C14 – плёночные

Напряжение при проверке исправных конденсаторах даже небольшой ёмкости и больших значений ЭПС существенно меньше падения напряжения на переходах полупроводников, что позволяет, в большинстве случаев проверять ёмкости не выпаивая их из плат.

Помимо измерения ЭПС конденсаторов устройство можно применять в качестве миллиомметра. В этом случае измеренное значение сопротивления в 0,001 также будет соответствовать напряжению на выходе 0,1 мВ.

P.S. Если добавить к измерителю ЭПС преобразователь напряжения и вольтметр, то в итоге получится автономное и компактное устройство, которое поможет, к примеру, выбрать электролитические конденсаторы непосредственно в магазине.

Эта возможность оказалась особенно актуальной при сравнении конденсаторов, выпаянных из материнских плат и источников питания ATX в сравнении с новыми, приобретёнными в магазине. ЭПС купленных конденсаторов (Jamicon, возможно подделка, но других в продаже не было) часто оказывался хуже проработавших на 10-20%...

Ниже вы можете скачать печатную плату в формате Autocad

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
DA1, DA2 Программируемый таймер и осциллятор

NE555

2 В блокнот
DA3 Линейный регулятор

LM7908

1 В блокнот
DA4 Операционный усилитель

AD823

1 TL072/082 В блокнот
DA5 Мультиплексор/демультиплексор

CD4066B

1 В блокнот
DA6 ОУ AD711JN 1 TL071/081 В блокнот
DA7 Линейный регулятор

LM317L

1 В блокнот
DD1 Микросхема HCF4017BE 1 В блокнот
VT1 Полевой транзистор КП507А 1 В блокнот
VT2 Биполярный транзистор

C945

1 В блокнот
VT3 Биполярный транзистор

2SA733

1 В блокнот
VT4 MOSFET-транзистор

IRF3205

1 В блокнот
VD1-VD10 Выпрямительный диод

1N4148

10 В блокнот
VD11, VD12 Диод Шоттки

1N5817

2 В блокнот
С1, С10, С11 Конденсатор 0.01 мкФ 3 В блокнот
С2 Конденсатор 1500 пФ 1 В блокнот
С3, С4, С8, С9, С21-С28 Конденсатор 0.1 мкФ 12 В блокнот
С5 22 мкФ 63 В 1 В блокнот
С6, С7, С15-С20 Электролитический конденсатор 100 мкФ 35 В 8 В блокнот
С12, С13 Конденсатор 1000 пФ 2 В блокнот
С14 Конденсатор 0.022 мкФ 1 В блокнот
R1 Резистор

5.1 кОм

1 В блокнот
R2 Резистор

1.2 кОм

1 В блокнот
R3 Резистор

4.3 кОм

1 В блокнот
R4 Резистор

1.5 кОм

1 В блокнот
R5 Резистор

Представляю вашему вниманию, как просто сделать измеритель ЭПС конденсаторов, который собирается всего за пару часов буквально "На коленке". Сразу предупреждаю, что не являюсь автором этой идеи, данную схему уже сотню раз повторили разные люди. В схеме всего десять деталей, и любой цифровой мультиметр, с ним ничего колдовать не нужно, просто подпаиваемся к точкам и все.

О деталях измерителя ЭПС. Трансформатор с соотношением витков 11\1. Первичную обмотку нужно мотать виток к витку на кольце М2000 К10х6х3, на всей окружности кольца (изолированного), вторичку желательно распределить равномерно, с небольшим натягом. Диод D1 может быть любой, на частоту более 100 КГц и напряжение более 40 В, но лучше Шоттки. Диод D2 - супресор на 26 - 36 В. Транзистор - типа КТ3107, КТ361 и аналогичные.

Измерения ЭПС проводить на измерительном пределе 20 В. При подключении разъёма измерительной выносной "головки" прибор "автоматически" переходит в режим измерения ЭПС, об этом свидетельствует показание примерно 36 В прибора на пределе 200 В и 1000 В (зависит от применённого супрессора), а на пределе 20 В - показание "выход за предел измерения".

При отключении разъёма измерительной выносной "головки" прибор автоматически переходит штатный режим мультиметра.

Итого: включаем адаптер - автоматом включается измеритель, выключили - штатный мультиметр. Теперь калибровка, ничего заумного, обычный резистор (не проволочный) подгоняем шкалу. Вот примерно как это выглядело:

Для поиска таких конденсаторов предлагается разработанный и изготовленный автором прибор, обладающий высокой точностью и разрешающей способностью. Для большего удобства пользования прибором предусмотрена возможность его совместной эксплуатации с практически любым цифровым вольтметром (муль-тиметром}. Учитывая доступность цен на "народные" цифровые мультиметры серии 8300, предлагаемая конструкция является своеобразной "находкой" для многих радиолюбителей, особенно если учесть, что в схеме нет никаких дефицитных или дорогостоящих комплектующих и даже моточных узлов.

Оксидные (электролитические) конденсаторы применяются повсеместно. Они влияют на надежность к качество работы радиоэлектронных средств (РЭС). По качеству и назначению конденсаторы характеризуются многими показателями. Сначала работоспособность и область применения конденсаторов оценивали по емкости, рабочему напряжению, току утечки и массогабаритным показателям. Увеличились мощности и возросли частоты, на которых применяются электролитические конденсаторы. Современные импульсные блоки питания РЭС имеют мощность десятков-сотен ватт (и более) и работают на частотах в десятки-сотни килогерц. Возросли токи, протекающие через конденсаторы, соответственно, повысились и требования к их параметрам.

К сожалению, при массовом производстве качественные показатели не всегда соответствуют стандартам. В первую очередь, это сказывается на таком параметре, как эквивалентное последовательное сопротивление (ЭПС), или ESR. Этому вопросу уделяется недостаточно внимания, особенно в радиолюбительской литературе, хотя неисправностей, возникающих по вине ЭПС конденсаторов, становится все больше. Досадно, но даже среди новеньких конденсаторов все чаще стали встречаться экземпляры с увеличенным ЭПС.

Зарубежные конденсаторы также не являются исключением. Как показали измерения, величина ЭПС у однотипных конденсаторов может отличаться в несколько раз. Имея в своем распоряжении измеритель ЭПС, можно отбирать конденсаторы с наименьшей величиной ЭПС для установки в наиболее ответственные узлы устройств.

Не следует забывать о том, что внутри конденсатора протекают электрохимические процессы, которые разрушают контакты в зоне соединения обкладок с алюминиевыми контактами. Если у нового конденсатора величина ЭПС завышена, то и его эксплуатация не способствует ее снижению. Напротив, ЭПС со временем возрастает. Как правило, чем больше ЭПС конденсатор имел до установки, тем скорее и возрастет его величина. ЭПС неисправного конденсатора может повыситься от нескольких ом до нескольких десятков ом, что эквивалентно появлению нового элемента - резистора внутри неисправного конденсатора. Поскольку на этом резисторе рассеивается тепловая мощность, конденсатор разогревается, и в зоне контактов электрохимические процессы протекают быстрее, способствуя дальнейшему росту ЭПС.

Специалистам по ремонту различных РЭС хорошо знакомы дефекты импульсных блоков питания, связанные с увеличением ЭПС конденсаторов. Измерение емкости с помощью широко распространенных приборов часто не дает желаемых результатов. Такими приборами (С-метрами) выявить дефектные в плане ЭПС конденсаторы, к сожалению, не удается. Емкость будет в пределах нормы или всего лишь незначительно занижена. При величине ЭПС, не превышающей 10 Ом, показания измерителя емкости не дают оснований для подозрений (на точность измерений такая величина ЭПС практически не влияет), и конденсатор считают исправным.

Технические требования к измерителю ЭПС . Повышенные требования к качеству конденсаторов прежде всего предъявляются в импульсных блоках питания, где такие конденсаторы применяются в качестве фильтров на частотах до 100 кГц или в цепях переключения силовых элементов. Возможность измерения ЭПС позволяет не только выявлять вышедшие из строя конденсаторы (за исключением случаев утечки и короткого замыкания), но и, что очень важно, производить раннюю диагностику пока еще не проявившихся дефектов РЭС. Чтобы иметь возможность измерения ЭПС, процесс измерения комплексного сопротивления конденсатора осуществляют на достаточно высокой частоте, где емкостное сопротивление намного меньше допустимой величины ЭПС. Так, например, для конденсатора емкостью 5 мкФ емкостное сопротивление равно 0,32 Ом при частоте } 00 кГц. Как видим, емкостное сопротивление даже у электролитического конденсатора малой емкости во много раз меньше ЭПС дефектного конденсатора. Величина ЭПС неисправных конденсаторов емкостью до 200 мкФ значительно превышает 1 Ом.

По величине ЭПС можно уверенно оценивать пригодность конденсатора для тех или иных целей. Покупая конденсаторы, с помощью портативного измерителя ЭПС можно выбрать лучшие экземпляры. Важно, что процесс измерения ЭПС можно осуществлять без демонтажа проверяемых конденсаторов. При этом необходимо, чтобы конденсатор не был зашунтирован резистором, имеющим сопротивление, соизмеримое с ЭПС. Максимальное напряжение на щупах прибора следует ограничить, чтобы не вывести из строя элементы ремонтируемого РЭС. Полупроводниковые приборы не должны влиять на показания измерителя ЭПС. Значит, напряжение на измеряемом конденсаторе должно быть минимальным, чтобы исключить влияние активных элементов РЭС.

При работе в стационарных условиях прибор должен работать от электросети (можно, например, использовать соответствующий переключатель и внешний блок питания). Для исключения переполюсовки внешнего блока питания или зарядного устройства необходимо предусмотреть защиту. Чтобы предотвратить глубокий разряд аккумуляторов, нужно использовать защиту с отключением или, по крайней мере, предусмотреть индикацию контроля за напряжением аккумулятора. Для стабилизации параметров прибора необходимо использовать встроенный стабилизатор напряжения. Этот стабилизатор должен удовлетворять как минимум двум требованиям: быть экономичным, т.е. иметь малое собственное потребление тока, и обеспечивать достаточно стабильное выходное напряжение при изменении входного питающего напряжения в диапазоне не менее 7... 10 В.

Большое значение имеет индикатор показаний ЭПС. Измерители ЭПС с дискретной индикацией, например, на светодиодах малопригодны для отбраковки (выбора) конденсаторов из больших партий и обладают огромными погрешностями измерения ЭПС. Измерители ЭПС с нелинейными шкалами вызывают проблемы с выполнением новой шкалы, с отсчетом показаний и обладают большой погрешностью измерений. Новые схемы на программируемых "чипах" (микроконтроллерах), как это ни печально констатировать, пока еще не доступны большинству радиолюбителей. По цене же одного только микроконтроллера можно приобрести все комплектующие для изготовления рассматриваемого ниже измерителя ЭПС.

В составе измерителя ЭПС удобно иметь стрелочный измерительный прибор с линейной шкалой, не требующей никаких переделок, используя, например, одну общую шкалу 0...100 на все поддиапазоны прибора. При длительной и интенсивной работе с измерителем ЭПС очень удобно использовать цифровую шкалу. Однако самостоятельное изготовление цифрового прибора не выгодно из-за усложнения конструкции в целом и высокой себестоимости. Лучше предусмотреть возможность работы измерителя совместно с широко распространенным и дешевым цифровым мультиметром серии 8300, например М830В. Подойдет любой другой ци-фровой вольтметр с аналогичными характеристиками, имеющий диапазон измерения постоянного напряжения 0...200 мВ или 0...2000 мВ. По цене одного микроконтроллера можно приобрести один или даже два таких мультиметра. Цифровой индикатор измерителя ЭПС позволяет быстро отсортировывать конденсаторы. Стрелочный (встроенный) измеритель пригодится в тех случаях, когда под рукой нет цифрового тестера.

Пожалуй, самым важным параметром является надежность работы прибора. А она, так или иначе, зависит от человеческого фактора. Что это за прибор, который выходит из строя, если проверяемый конденсатор не разряжен? В спешке ремонтники аппаратуры нередко разряжают конденсаторы не резисторами, а проволочными перемычками, что пагубно влияет на срок службы самих электролитических конденсаторов. Прибор не должен выходить из строя и разряжать конденсаторы экстратоками.

Измеритель ЭПС должен обладать широким диапазоном измерения величины ЭПС. Очень хорошо, если он будет измерять ЭПС от 10 Ом до практически нулевого значения. Измерение ЭПС более 10 Ом неактуально, поскольку экземпляры электролитических конденсаторов с таким ЭПС - это уже полная некондиция, особенно для работы в импульсных схемах, тем более на частотах десятков-сотен килогерц. Удобно иметь прибор, позволяющий измерять величины ЭПС менее 1 Ом. В таком случае предоставляется "эксклюзивная" возможность отбора самых лучших экземпляров конденсаторов среди лучших типов с наибольшей емкостью.

В качестве основного источника питания применена батарея, составленная из дисковых никель-кадмиевых аккумуляторов типа Д-0,26Д. Они более надежные и энергоемкие, чем 7Д-0,1. Предусмотрена возможность подзарядки аккумуляторов.

Технические характеристики

  • Диапазоны измеряемых сопротивлений......0...1 Ом, 0...10 Ом
  • Используемая частота измерительного сигнала.........77 кГц
  • Напряжение питания...........7... 15 В
  • Потребляемый ток, не более.......................4,5 мА

Принципиальная электрическая схема измерителя ЭПС электролитических конденсаторов показана на рис.1. В основе конструкции прибора - омметр, работающий на пере-менном токе. Повышать частоту более ] 00 кГц не следует из-за верхней граничной частоты (100 кГц) микросхемного детектора типа К157ДА1, который применен в данной конструкции прибора, к тому же, не все типы электролитических конденсаторов рассчитаны на работу при частотах более 100 кГц.
Генератор прибора выполнен на микросхеме DD1 типа К561ТЛ1. Выбор данного типа ИМС обусловлен исключительно соображениями повышения экономичности прибора. В данной ситуации можно применить другие генераторы, выполненные на более распространенных ИМС, в частности на К561ЛА7 или К561ЛЕ5. При этом возрастет потребление тока от источника питания.

К генератору предъявляются два требования: стабильность амплитуды и стабильность частоты. Первое требование важнее второго, поскольку изменение амплитуды выходного напряжения генератора является большим дестабилизирующим фактором, чем изменение частоты. Поэтому нет необходимости в использовании кварцевых резонаторов, а также в точной установке частоты, равной именно 77 кГц. Рабочую частоту прибора можно выбрать в пределах 60...90 кГц. Настройка и эксплуатация прибора должны производиться на одной и той же рабочей частоте, поскольку стабильные параметры настроенного прибора сохраняются в довольно узком диапазоне частот.

С выхода генератора сигнал прямоугольной формы через элементы R17-R19, С8 подается на проверяемый конденсатор Сх (клеммы 1 и 2). С конденсатора Сх сигнал поступает на усилитель, с усилителя - на детектор, затем выпрямленный - на стрелочный измерительный прибор РА1 и цифровой вольтметр (разъем XS2). Протекание тока через испытуемый конденсатор вызывает падение напряжения на нем. Для измерения малых сопротивлений нужна высокая чувствительность детектора, не говоря уже о его линейности. Если значительно увеличить ток, протекающий через испытуемый конденсатор, то резко возрастет и ток, потребляемый от источника питания.

В авторском варианте величина тока через испытуемый конденсатор равна приблизительно 1 мА, т.е. каждому милливольту падения напряжения соответствует 1 Ом ЭПС конденсатора. При ЭПС, равном 0,1 Ом, необходимо иметь дело с измерением напряжений величиной 100мкВ! Поскольку данный прибор способен измерять на порядок меньшие величины ЭПС, то речь уже идет о десятках микровольт, которые должны четко фиксироваться измерителем.
Очевидно, что для нормальной работы детектора сигнал нужно усилить. Эту задачу выполняет усилительный каскад: на малошумящем транзисторе VT7 выполнен усилитель по схеме с ОЭ (коэффициент усиления на рабочей частоте равен 20), на транзисторе VT8 выполнен буферный усилитель, собранный по схеме с ОК.

Конденсатор С9 является элементом ФВЧ. Выбранная величина емкости конденсатора СЮ фактически предотвращает работу цепи R24C10 на НЧ. Такими простыми способами реализован значительный завал АЧХ в области НЧ. Спад АЧХ в области НЧ дополнительно сформирован и выбором емкостей С1 и С12 в схеме детектора. В Ч помехи дополнительно ограничиваются резистором R23 (учтены и защитные элементы).

Для того чтобы тестируемый конденсатор (неразряженный) не вывел из строя ИМС генератора, в схеме предусмотрены защитные элементы VD1, VD2, R19. Аналогичная цепь, состоящая из элементов R22, VD3, VD4, защищает вход усилителя. В рабочем режиме (при измерении ЭПС) диоды практически не оказывают никакого шунтирующего влияния на сигнал. При отключении тестируемого конденсатора Сх от клемм 1 и 2 диоды ограничивают амплитуду сигнала на входе усилителя, хотя сигнал такого уровня не приводит к отказу усилителя. Данная схема защиты прибора, несмотря на простоту реализации, подтвердила на практике свою высокую эффективность.

Измеритель ЭПС электролитических конденсаторов неприхотлив в эксплуатации. Номиналы резисторов R19 и R22 выбраны с таким расчетом, чтобы обеспечить надежный разряд проверяемых конденсаторов, работающих практически в любой бытовой аппаратуре. Следовательно, защитные диоды должны эффективно разряжать тестируемые конденсаторы, и сами при этом быть надежно защищенными от перегрузок по току при разряде конденсаторов. Секция тумблера SA1.2 с кнопкой SA4 и резисторами R20 и R21 служат для калибровки прибора.

Сложнее всего обстояло дело с выбором схемы детектора. Здесь возникали свои специфические проблемы. Практические испытания многих широко распространенных диодных детекторов лишь подтвердили их непригодность для линейного детектирования напряжения в широком диапазоне изменения амплитуд. Ничего подходящего из схемотехнически простого, реализованного на дискретных элементах, на что можно было бы опереться, в литературе найти не удалось.

Сама же идея использования микросхемы К157ДА1 в детекторе измерителя ЭПС возникла случайно. Вспомнилось, что ИМС типа К157ДА1 широко применялась в индикаторах уровня записи различных отечественных магнитофонов. В первую очередь мое внимание привлекла сравнительная простота схемного включения данной ИМС. Ток, потребляемый ИМС от источника питания, также устраивал, как и подходящий рабочий диапазон частот. Допускается также работа этой ИМС с однополярным питанием. Однако типовое включение К157ДА1 не подходит в рассматриваемом случае . В итоге пришлось не только видоизменить схему включения ИМС в сравнении с типовой, но и в несколько раз изменить номиналы элементов обвязки.

Данная ИМС имеет в своем составе двухканальный двухполупериодный выпрямитель. Второй канал в рассматриваемой конструкции не используется. Макетирование подтвердило линейность детектирования ИМС на частотах до 100 кГц. Некоторые экземпляры ИМС имели даже определенный запас по верхней граничной частоте (две из десяти испытанных ИМС - до 140 кГц). Дальнейшее повышение частоты вызывало резкое уменьшение выпрямленного напряжения ИМС. Нелинейность детектирования ИМС проявлялась при минимальных уровнях сигнала и при значительном усилении ИМС. Не меньше досаждало и выходное напряжение покоя (на выводе 12 ИМС), которое, согласно справочным данным, может достигать 50 мВ, с чем никак нельзя было смириться, если уж решено было изготовить измерительный прибор, а не индикатор ЭПС.

Спустя некоторое время и эта проблема была успешно преодолена. Между выводами микросхемы 14 и 2 установлен в типовом включении резистор R3 сопротивлением 33 кОм. Он подключен к искусственной средней точке делителя напряжения, образованного резисторами R1 и R2 (рис.1). Это и есть вариант применения ИМС при однополярном питании.

Как в последствии выяснилось, от величины сопротивления резистора R3 значительно зависит линейность детектирования именно в области малых амплитуд. Уменьшение сопротивления R3 в несколько раз обеспечивает необходимую линейность детектора, и, что не менее важно, сопротивление этого резистора влияет и на величину постоянного напряжения покоя (вывод 12 ИМС). Присутствие этого напряжения мешает нормально проводить измерения при малых значениях ЭПС (придется при каждом измерении заниматься математической операцией вычитания). Отсюда и важность установки "нулевого* потенциала на выходе детектора.

Правильный выбор сопротивления резистора R3 практически устраняет эту проблему. В предлагаемом варианте сопротивление резистора более чем в три раза меньше типового номинала. Есть смысл и в дальнейшем снижении величины этого сопротивления, но при этом значительно снижается и входное сопротивление детектора. Оно теперь практически полностью определяется сопротивлением резистора R3.

На транзисторах VT1 и VT2 выполнена защита для стрелочного измерителя РА1. Такое включение транзисторов обеспечивает четкий порог срабатывания и совершенно не шунтирует головку РА1 в диапазоне рабочих токов РА1, что повышает ее надежность и увеличивает срок службы.

Переключатель SA3 служит для оперативного контроля за величиной напряжения аккумулятора и позволяет измерять его под нагрузкой, т.е. непосредственно при работе прибора. Это важно потому, что у многих аккумуляторов со временем, даже при глубоком разряде (без нагрузки), напряжение может находиться в норме или быть близким к номинальному, но стоит подключить нагрузку, даже в несколько миллиампер, как напряжение такой батареи резко снижается.
На транзисторах VT3-VT6 выполнен микромощный стабилизатор напряжения (СН), питающий все элементы прибора. При использовании нестабилизированного источника питания все параметры прибора изменяются. Уменьшение напряжения (разряд) аккумулятора также значительно "сбивает" всю настройку. Детектор, кстати, оказался самым стойким к изменениям питающего напряжения. Наиболее зависимым от напряжения питания (сильно изменяется амплитуда напряжения прямоугольной формы) является генератор, что делает невозможной эксплуатацию прибора.
Использование микросхемного СН вызывает нерациональное потребление тока самим стабилизатором, поэтому от него вскоре пришлось отказаться. После экспериментов с различными схемами на дискретных элементах, автор остановился на схеме СН, показанной на рис.1. На вид этот СН очень простой, но его наличия в данной схеме вполне достаточно для того, чтобы все технические параметры измерителя ЭПС сохранялись стабильными при изменении напряжения аккумулятора от 7 и до 10В. При этом имеется возможность питания прибора от внешнего БП, даже нестабилизированного, напряжением до 15 В.

Собственное энергопотребление СН определяется величиной коллекторного тока транзистора VT6 и выбиралось в пределах 100...300 мкА. На транзисторе VT6 выполнен аналог маломощного стабилитрона. Его напряжение определяет величину выходного напряжения СН, которое меньше напряжения стабилизации стабилитрона на величину напряжения перехода база-эмиттер транзистора VT3.

Детали. Резисторы R1-R3, R5, R7, R15, R29 -10 кОм, R4, R6, R8, R10, R11, R13, R24, R30-1кОм,R9-39кОм,R12-100 Oм,R14-680 кОм, R16 -100 кОм, R17, R25 - 2,4 кОм, R18 - 4,7 кОм, R19, R22 - 330 кОм, R20 -1 Ом, R21 - 10 Ом, R23 - 3,3 кОм, R26 - 150 кОм, R27 - 820 кОм, R28 - 20 кОм. Конденсаторы С1, СЗ, С6, С10, С12 - 0,1 мкФ, С2, С4, С5, С11 - 5 мкФх16 В, С7 -150 пФ, С8 - 0,47 мкФ, С9-0,01 мкФ.

Резисторы R4, R10, R16, R17, R20, R21, R24, R25 типа С2-13, подстроечные резисторы типа СП-38В, остальные - МЛТ. Конденсатор С7 типа КСО-1; С1, СЗ, С6, С9 - К10-17, остальные К73-17 и К50-35. Транзисторы VT2, VT3, VT7 типа ВС549С. В позиции VT7 следует применять транзистор с максимальным h21э. Транзисторы ВС549 заменимы отечественными КТ3102 или КТ342. Транзисторы VT1, VT4, VT8 типа ВС557С. Вместо них применяли также и отечественные КТЗ107 (К, Л). В качестве полевого транзистора в генераторе стабильного тока использовались КП10ЗЕ. Конденсатор С6 припаян со стороны печатных проводников, непосредственно на выводах DD1. Резистор R24 на плате усилителя условно не показан. Он припаян последовательно с конденсатором С10.

Диоды VD5, VD6 - КД212, VD1-VD4 -1 N4007. К диоду VD6 особых требований не предъявляется, он может быть любым кремниевым. Диод VD5 должен выдерживать максимальный зарядный ток аккумуляторов. Иначе обстоит дело с диодами VD 1-VD4. Если вход прибора не будет подключаться к только что выключенному модулю питания телевизора (его электролитическому конденсатору), то вместо 1 N4007 можно устанавливать Д220, Д223, КД522 и т.д. В качестве этих диодов лучше всего подходят экземпляры с минимальными емкостями и допустимым током более 1 А.

Переключатель SA1 типа МТ-3, SA2, SA3 -МТ-1, SA4 - КМ2-1. Малогабаритный стрелочный измерительный прибор рассчитан на ток 100 мкА и имеет внутреннее сопротивление 3 кОм. С успехом подойдут практически любые стрелочные измерительные приборы на ток 100 мкА. При большем токе потребуется соответствующее уменьшение номиналов резисторов R7 и R8.

Конструкция. Задача создания миниатюрного прибора не ставилась, нужно было поместить прибор и батарею аккумуляторов Д-0,26Д в пластмассовый корпус размерами 230x80x35 мм. Прибор конструктивно выполнен на четырех отдельных печатных платах. Плата усилителя и расположение деталей на ней показано на рис.2, плата генератора и расположение деталей на ней - на рис.3, плата стабилизатора напряжения и расположение деталей на ней - на рис.4, плата детектора и расположение деталей на ней - на рис.5.

Такое исполнение прибора вызвано заменой отдельных блоков новыми в результате проводившихся экспериментов и модернизаций устройства. Модульно-блочная конструкция всегда оставляет шанс к "отступлению". В рассматриваемом варианте намного проще проводить модернизацию или ремонт. Ведь легче заменить один небольшой блок, чем заново создавать новую конструкцию на одной большой печатной плате. Перед размещением в указанном корпусе, размеры всех плат были уменьшены (платы аккуратно обрезаны ножницами по металлу).

Для того чтобы обеспечить возможность измерения минимальных величин сопротивлений, нужно минимизировать сопротивления, соединяющие вход прибора с Сх. Для этого недостаточно применить короткие провода. Монтаж прибора выполнен так, чтобы общие провода схем генератора, усилителя и точки подключения Сх находились на минимальном удалении друг от друга.

Непродуманный монтаж легко нарушит нормальную работу прибора в диапазоне 1 Ом, превратив его в весьма неудобный и посредственный измеритель этого диапазона. Именно ради этого диапазона автор взялся за разработку данного устройства, поскольку реализовать "традиционный" диапазон измерения ЭПС можно по более простым схемам. Диапазон 0...1 Ом позволяет очень быстро "разбираться" с такими конденсаторами, как 10000 мкФ и более.

Настройка. Несмотря на наличие в схеме шести подстроечных резисторов и других элементов, требующих подбора, настройка прибора не является сложным процессом. Первоначально движки всех подстроечных резисторов устанавливают в положение, соответствующее максимальному сопротивлению. На время настройки использовались многооборотные резисторы типа СП5-3, хотя печатные платы разрабатывались под исполнение СП-38В. После настройки прибора все они были заменены постоянными резисторами.

Настройку начинают с СН. К выходу СН подключают резистор МЛТ-0,25 сопротивлением 1,2 кОм. Подбором резистора R13 достигают минимально возможного тока через транзистор VT6, при котором СН сохраняет устойчивую работу при входном напряжении от 7 и до15 В. Увлекаться чрезмерным уменьшением этого тока не следует. Рекомендуемая величина его - 100...500 мкА. После установки этого тока приступают к подбору резистора R14. От него зависит выходное напряжение СН, величину которого устанавливали в пределах 6...6,3 В. Дополнительно уменьшить падение напряжения на СН можно заменой резистора R12 проволочной перемычкой (после настройки всего прибора). Однако СН тогда лишается ограничения тока при нештатных ситуациях в нагрузке СН.

Настройка усилителя на транзисторах VT7, VT8 заключается в подборе сопротивления резистора R24 для достижения усиления по напряжению приблизительно в 20 раз (на рабочей частоте). Точность указанной величины здесь не важна. Куда важнее стабильность усиления, которая больше всего зависит от стабильности элементов С10, R24, R25, VT7. Показанное на схеме рис. 1 положение контактов переключателя SA1 соответствует диапазону 10 Ом. Замыкают контакты кнопочного выключателя SA4. Таким образом, вместо конденсатора Сх к входу прибора подсоединен высокостабильный калибровочный резистор R21 сопротивлением 10 Ом. Затем резистором R18 устанавливают напряжение 10 мВ на резисторе R21 (и 200 мВ, если необходимо, подбором R24 - на эмиттере VT8). Уменьшая сопротивление резистора R5, устанавливают стрелку измерителя РА1 на конечную отметку его шкалы (100 мкА). Подстроечным резистором R11 устанавливают показания цифрового вольтметра 100мВ. При необходимости уменьшают и сопротивление резистора R7. Наличие калибровочных резисторов позволяет быстро оценивать работоспособность налаженного прибора.

Необходимо определиться также с наладкой узла защиты РА1. В этой схеме имеются свои тонкости. Для того чтобы не устанавливать никаких дополнительных элементов - индикаторов включения прибора (непременно потребляющих электроэнергию, затраченное время и усложняющих схему), автор использовал "гистерезис" схемы защиты в плане индикации включения прибора. С помощью резистора R8 устанавливают ток срабатывания защиты 130... 150 мкА.

После срабатывания защиты (оба транзистора открыты) стрелка РА1 возвращается в некоторое среднее положение шкалы. Изменяя сопротивление R8, можно достичь такого включенного состояния транзистора VT2, что стрелку прибора РА1 удастся "затянуть" практически в любой рабочий участок шкалы РА1. Такое состояние схемы защитного узла оказывается весьма стабильным, не требующим никакой последующей подстройки. Во многом этому схема обязана использованию указанных типов транзисторов.

Положение стрелки в рабочем секторе не мешает измерениям, поскольку защита не при вязана к величине рабочего тока РА1. Закорачивание выводов Сх прибора или подсоединение исправного конденсатора Сх тут же вызывает установку стрелки в положение, соответствующее величине измеряемого сопротивления. И только завышенное значение тока через РА1 снова приводит защиту в действие. Такой замечательной защитой можно оснастить многие измерительные приборы. Защиту настраивают один раз и больше сопротивление резистора R8 не изменяют. Иначе потребуется дополнительная настройка прибора по причине изменения общего сопротивления резисторов R7 и R8.
Далее переводят переключатель SA1 в положение, соответствующее диапазону 1 Ом. Так же, как и при настройке прибора в диапазоне 10 Ом, но более тщательно, закорачивают выводы SA4. Несмотря на то, что в конструкции применены прецизионные калибровочные резисторы, их пришлось подбирать. Виной тому оказалось наличие значительного сопротивления, вносимого проводами и контактами SA4, SA 1.2. Поэтому в диапазоне 1 Ом при настройке замыкают контакты уже обоих выключателей (с кнопкой наладка неудобна, поэтому ее контакты закорачивали даже при настройке в диапазоне 10 Ом). Дело в том, что прибор легко фиксирует переходные сопротивления контактов выключателей SA1.2 и SA4.

В данной схеме практически никакой токовой нагрузки контакты SA1 и SA4 не несут. С этой целью и применен кнопочный вариант исполнения SA4, фактически исключающий подачу энергии неразряженного конденсатора Сх на эти переключатели. Это означает, что их переходные сопротивления будут долговременно стабильными. В результате их можно стабильно "нейтрализовать", уменьшив сопротивления R20, R21. В авторском варианте прибора параллельно R20 включен резистор 22 Ом (МЛТ-0,5) и параллельно R21 - резистор 130 Ом (МЛТ-0,5).

Регулировочные операции повторяют, чтобы обеспечить максимальную точность измерений на обоих диапазонах. Конечно, прибор не должен на разных диапазонах индицировать совершенно разные показания при одном и том же подключенном конденсаторе Сх. В диапазоне 1 Ом настройка требует установки напряжения на табло цифрового вольтметра 100 мВ с помощью подстроечного резистора R6. Поскольку этот резистор подключается параллельно резистору R5, то не следует забывать о зависимости наладки диапазона 1 Ом от наладки 10 Ом. Такой вариант коммутации проще схемотехнически и практически (вместо трех проводов к плате подходят только два). В последнюю очередь подбирают номинал резистора R9, с тем чтобы 100мВ на цифровом мультиметре соответствовало 10 В напряжения аккумулятора.

Модернизация прибора. Если прибор нужен только для стационарных условий эксплуатации, то СН из схемы удаляют. При исключении стрелочного измерителя РА1 схема также упрощается, элементы R8, VT1, VT2 убирают. Вместо резистора R8 устанавливают проволочную перемычку. Такой вариант (без измерителя РА1) позволяет немного снизить энергопотребление прибора за счет схемы детектора. После удаления стрелочной головки, учитывая большое входное сопротивление цифрового тестера, номиналы резисторов R7, R10, R11 увеличивают в 10 раз. Тем самым разгружают выход ИМС, что благоприятно сказывается на работе ИМС. Конденсатор С4 заменяют неэлектролитическим К10-17-2,2 мкФ. Впрочем, чтобы повысить надежность прибора, все электролитические конденсаторы впоследствии были заменены неэлектролитическими (К10-17-2,2 мкФ).

В случае совместного использования данного прибора с цифровым мультиметром, имеющим диапазон 0...200 мВ или 0...2000 мВ, легко расширить диапазон измеряемых сопротивлений "вверх", т.е. до 20 Ом. Нужно только заново подобрать номиналы элементов R7 и R10.

Уточнение. В спецификации примененных в приборе деталей, которая приведена в первой части статьи (РА 3/2005, с. 24, 3-я колонка, 3-й абзац сверху), сопротивление резисторов R19, R22 должно быть не 330 кОм, а 330 Ом. Приносим свои извинения.

Литература
1. Новаченко И.В. Микросхемы для бытовой радиоаппаратуры. - М.: Радио и связь, 1989.
2. Зызюк А.Г. Особенности ремонта усилителей WS-701//Paдиоa-матор.-2004.-№6.-С.11-13.
3. Зызюк А.Г. Некоторые особенности ремонта СДУ//Радюаматор. -2004.-№7. С. 12-13.
4. Зызюк А.Г. Мини-дрель ремонтника и радиолюбителя//Радюама-тор.-2004.-№8.-С.20-21.
5. ЗызюкА.Г. Простой измеритель емкости//Радюаматор. - 2004. -№9. - С.26-28.
6. Зызюк А.Г. О простых и мощных стабилизаторах напряжения//Эле-ктрик.-2004.-№6.-С.10-12.
7. Зызюк А. Г. Генератор стабильного тока для зарядки аккумуляторов и его применение при ремонте и конструировании радиоэлектронных средств//Электрик. - 2004. - №9. - С.8-10.
8. Радюаматор. Лучшее за 10 лет (1993-2002). - К.: Радюаматор, 2003.Как сделать светодиодную лампу с питанием от 220 В