Компьютерная сеть в школе. То есть группы нужны для группировки пользователей по принципу одинаковых полномочий на какие-либо действия, вот такая тавтология


Дипломная

Информатика, кибернетика и программирование

Создание локальной сети и настройка оборудования для доступа к сети интернет, используя для контроля биллинговую систему; Свободное подключение обучающихся к ресурсам Интернет только в учебных целях; Выбор оборудования должен быть основан на технических характеристиках, способных удовлетворить требованиям к скорости передачи данных...

Введение

Пo заданию дипломного проекта требуется спроектировать локальную вычислительную сеть школьного кабинета информатики с учетом стандартов построения сетей и конструкторских особенностей здания.

Локальная вычислительная сеть (ЛВС) представляет коммуникационную систему, объединяющую компьютеры и подключаемое к ним оборудование на ограниченной территории, обычно не больше одного предприятия или нескольких зданий. В настоящее время ЛВС стала неотъемлемым атрибутом в любых вычислительных системах, имеющих более одного компьютера.

Достоинства локальной сети – это, прежде всего, централизованное хранение данных, возможность совместной работы и быстрого обмена данными, разделяемый доступ к общим ресурсам, таким как принтеры, сеть интернет и другие.

Еще одной важной функцией локальной сети является создание отказоустойчивых систем, продолжающих функционирование при выходе из строя некоторых входящих в них элементов. В ЛВС отказоустойчивость обеспечивается путем дублирования, избыточности и гибкости работы персональных компьютеров.

Огромные возможности компьютеров по обработке информации делают их пригодными для разнообразного использования и в области образования. Они могут облегчить изучение и преподавание материала на всех уровнях – от дошкольников, овладевающих чтением, до учащихся старших классов и высших учебных заведений. Компьютеры пригодны для использования в таких областях, как история и естественные науки, профессиональная подготовка, русский язык и математика, музыка и изобразительное искусство, чтение и письмо. Компьютеры открывают новые пути в развитии различных навыков и умения решать проблемы, дают новые возможности для обучения. С помощью компьютеров можно сделать проведение уроков, упражнений, контрольных работ, а также учет успеваемости более простым и действенным. Это помогает учителям и позволяет им оставлять больше времени для занятий. Компьютеры могут сделать многие уроки интереснее и познавательней, а весь поток информации – легкодоступным.

На данный момент тема проекта является достаточно актуальной, так как разработка локальной сети – неотъемлемая стадия при проектировании любых зданий от офисов и учебных заведений до торговых центров, которые сейчас повсеместно строятся.

Согласно исходным данным, создаваемая информационно-вычислительная система здания не предназначена для передачи секретной информации. Поэтому структурированная кабельная система строится на более дешевой и менее сложной в практической реализации незащищенной элементной базе.

Решение всех поставленных задач будет выполнено с учетом всех стандартов построения кабельных систем, на основе предложенного плана учебного кабинета.

В результате выполнения дипломного проекта должна быть спроектирована локальная вычислительная сеть учебного кабинета, являющаяся удобной в настройке, установке и использовании. А так же проведены расчёты длины кабелей, соединяющих информационные розетки, и подобрано коммутационное оборудование для функционирования всей системы.

1 Разработка технического проекта

1.1 Исходные данные

Для выполнение работ по созданию локальной сети и настройке оборудования для доступа обучающихся в сеть интернет, утверждены следующие требования:

  1. Создание локальной сети и настройка оборудования для доступа к сети интернет, используя для контроля биллинговую систему;
  2. Свободное подключение обучающихся к ресурсам Интернет только в учебных целях;
  3. Выбор оборудования должен быть основан на технических характеристиках, способных удовлетворить требованиям к скорости передачи данных;
  4. Оборудование должно быть безопасно, защищено от поражения людей электрическим током, не должно создавать электрических помех в сети. Уровень электромагнитных излучений не должен превышать установленные санитарные нормы;
  5. Наименьшее количество рабочих станций в кабинете должно быть более десяти;
  6. У каждой рабочей станции должна иметься розетка с разъемом RJ-45 и в каждой станции должен быть сетевой адаптер, который встроен в системную плату;
  7. У каждой рабочей станции, для подключения к сети должен быть сетевой кабель с разъемами RJ45 на концах;
  8. Рабочая станция как место работы должно представлять собой полноценный компьютер или ноутбук;
  9. Наличие wi - fi по всему кабинету;
  10. Расположение рабочих мест должно удовлетворять требования стандартов размещения оборудования в учебных заведениях;
  11. В локальной сети должны присутствовать стационарные и портативные компьютеры;
  12. Затраты на создание локальной сети должны быть минимизированы;
  13. Надежность локальной сети.

1.2 Исследование существующих решений для построения сети

Любое сетевое устройство, коммутатор, маршрутизатор, сетевая карта компьютера используют для своей работы сетевую модель OSI, состоящую из семи уровней. Уровни располагаются снизу вверх, на первом, самом нижнем – расположен физический уровень, на седьмом, высшем уровне располагается прикладной уровень.

Сетевая модель OSI - абстрактная модель для коммуникаций и создания сетевых протоколов. В структуре которой, каждая часть процесса взаимодействия измеряется отдельно. Благодаря ее использованию взаимодействие программного обеспечения и сетевого оборудования становится намного проще и прозрачнее.

В таблице 1 описана сетевая модель OSI с указанием функций на каждом уровне. Уровни располагаются сверху вниз, начиная с седьмого и заканчивая первым.

Таблица 1 – Сетевая модель OSI

Модель OSI

Тип данных

Уровень (layer)

7. Прикладной (application)

Доступ к сетевым службам

6. Представительский (presentation)

Представление и кодирование данных

5. Сеансовый (session)

Управление сеансом связи

Сегменты

4. Транспортный (transport)

Прямая связь между конечными пунктами и надежность

3. Сетевой (network)

Определение маршрута и логическая адресация

2. Канальный (data link)

Физическая адресация

1. Физический (physical)

Работа со средой передачи, сигналами и двоичными данными

1.3 Принципы администрирования СКС

Принципы администрирования СКС полностью определяются ее структурой. Разделяют два вида администрирования одноточечное и многоточечное.

Под многоточечным администрированием понимают управление структурированной кабельной системой, построенной на архитектуре иерархической звезды, то есть она включает в себя магистральную подсистему хотя бы одного уровня. Основным признаком этого варианта является необходимость выполнения переключения минимум двух шнуров (или элементов, их заменяющих), то есть изменения конфигурации. При использовании этого принципа обеспечивается наилучшая гибкость управления, а также увеличиваются возможности СКС при адаптации к новым приложениям.

Архитектура одноточечного администрирования используется тогда, когда требуется максимально упростить управление СКС. Основной ее признак – соединение всех информационных розеток рабочих мест с оборудованием в одном техническом помещении. Принципиально подобная архитектура может использоваться только для кабельных систем, не имеющих магистральной подсистемы. Одноточечную архитектуру предпочтительнее всего использовать в сетях с малым количеством портов.

В данном проекте магистральная подсистема не предусматривается, так как все компьютеры локальной сети и коммутационное оборудование находятся в одном кабинете, а значит, применяться будет архитектура одноточечного администрирования.

1.4 Обзор и выбор топологии сетей

Термин «топология», или «топология сети», характеризует физическое расположение компьютеров, кабелей и других компонентов сети. Топология – это стандартный термин, который используется профессионалами при описании основной компоновки сети.

Топологию сети обуславливает её характеристики. В частности, выбор той или иной топологии влияет:

  1. на состав необходимого сетевого оборудования;
  2. характеристики сетевого оборудования;
  3. возможности расширения сети;
  4. способ управления сетью.

Чтобы совместно использовать ресурсы или выполнять другие сетевые задачи, компьютеры должны быть подключены друг к другу. Для этой цели будет применяться кабель.

Однако просто подключить компьютер к кабелю, соединяющему другие компьютеры, недостаточно. Разные типы кабелей в сочетании с различными сетевыми платами, сетевыми операционными системами и другими компонентами требуют и различного взаимного расположения компьютеров.

Каждая топология сети налагает ряд условий. Например, она может диктовать не только тип кабеля, но и способ его прокладки.

Топология может также определять способ взаимодействия компьютеров в сети. Различным видам топологий соответствуют различные методы взаимодействия, и эти методы оказывают большое влияние на сеть.

Все сети строятся на основе трёх базовых топологий:

  1. шина;
  2. звезда;
  3. кольцо.

Если компьютеры подключены вдоль одного кабеля (сегмента), топология называется шиной. В том случае, когда компьютеры подключены к сегментам кабеля, исходящим из одной точки, или концентратора, топология называется звездой. Если кабель, к которому подключены компьютеры, замкнут в кольцо, такая топология называется кольцом.

Хотя сами по себе базовые топологии несложны, в реальности часто встречаются довольно сложные комбинации, объединяющие свойства нескольких топологий.

1.4.1 Топология шина

Топологию «шина» часто называют «линейной шиной». Данная топология относится к наиболее простым и широко распространённым топологиям. В ней используется один кабель, именуемый магистралью или сегментом, вдоль которого подключены все компьютеры сети (рисунок 1).

Рисунок 1 – Простая сеть с топологией «шина»

В сети с топологией «шина» компьютеры адресуют данные конкретному компьютеру, передавая их по кабелю в виде электрических сигналов.

Данные в виде электрических сигналов передаются всем компьютерам сети; однако информацию принимает только тот, адрес которого соответствует адресу получателя, зашифрованному в этих сигналах. Причём в каждый момент времени только один компьютер может вести передачу.

Так как данные в сеть передаются лишь одним компьютером, её производительность зависит от количества компьютеров, подключённых к шине. Чем их больше, то есть чем больше компьютеров, ожидающих передачи данных, тем медленнее работает сеть.

Однако вывести прямую зависимость между пропускной способностью сети и количеством компьютеров в ней нельзя. Ибо, кроме числа компьютеров, на быстродействие сети влияет множество факторов, в том числе:

  1. характеристики аппаратного обеспечения компьютеров в сети;
  2. частота, с которой компьютеры передают данные;
  3. тип работающих сетевых приложений;
  4. тип сетевого кабеля;
  5. расстояние между компьютерами в сети.

Шина – пассивная топология. Это значит, что компьютеры только «слушают» передаваемые по сети данные, но не перемещают их от отправителя к получателю. Поэтому, если один из компьютеров выйдет из строя, это не скажется на работе стальных. В активных топологиях компьютеры регенерируют сигналы и передают их по сети.

В случаях, когда в сети происходят неполадки, сами по себе компьютеры остаются полностью работоспособными, но до тех пор, пока сегмент разорван, они не могут взаимодействовать друг с другом.

Достоинства топологии «шина»:

  1. простота настройки;
  2. относительная простота монтажа и дешевизна, если все рабочие станции расположены рядом;
  3. выход из строя одной или нескольких рабочих станций никак не отражается на работе всей сети.

Недостатки топологии «шина»:

  1. неполадки шины в любом месте (обрыв кабеля, выход из строя сетевого коннектора) приводят к неработоспособности сети;
  2. сложность поиска неисправностей;
  3. низкая производительность – в каждый момент времени только один компьютер может передавать данные в сеть, с увеличением числа рабочих станций производительность сети падает;
  4. плохая масштабируемость – для добавления новых рабочих станций необходимо заменять участки существующей шины.

После рассмотрения данной топологии и выявлении ее недостатков видно, что для реализации проекта она не является лучшим вариантом ввиду того что для нее не совсем подходит расположение компьютеров по стандартам, а также ее низкая надежность и масштабируемость не удовлетворяют требованиям проекта.

1.4.2 Топология кольцо

При топологии «кольцо» компьютеры подключаются к кабелю, замкнутому в кольцо. Поэтому у кабеля просто не может быть свободного конца, к которому надо подключать терминатор (рисунок 2). Сигналы передаются по кольцу в одном направлении и проходят через каждый компьютер. В отличие от пассивной топологии «шина», здесь каждый компьютер выступает в роли репитера, усиливая сигналы и передавая их следующему компьютеру. Поэтому, если выйдет из строя один компьютер, прекращает функционировать вся сеть.

Рисунок 2 – Простая сеть с топологией «кольцо»

Достоинства кольцевой топологии:

  1. простота установки;
  2. практически полное отсутствие дополнительного оборудования;
  3. возможность устойчивой работы без существенного падения скорости передачи данных при интенсивной загрузке сети.

Однако “кольцо” имеет и существенные недостатки:

  1. каждая рабочая станция должна активно участвовать в пересылке информации; в случае выхода из строя хотя бы одной из них или обрыва кабеля – работа всей сети останавливается;
  2. подключение новой рабочей станции требует краткосрочного выключения сети, поскольку во время установки нового ПК кольцо должно быть разомкнуто;
  3. сложность конфигурирования и настройки;
  4. сложность поиска неисправностей.

Рассмотрев данную топологию видно, что она так же не подходит для реализации в проекте учебного кабинета.

Во-первых, она имеет низкую отказоустойчивость.

Во-вторых, чтобы она работала, все компьютеры в кабинете должны быть включены, а это нужно не всегда.

1.4.3 Топология звезда

При топологии «звезда» все компьютеры с помощью сегментов кабеля подключаются к центральному компоненту, именуемому концентратором (рисунок 3). Сигналы от передающего компьютера поступают через концентратор ко всем остальным. Эта топология возникла на заре вычислительной техники, когда компьютеры были подключены к центральному, главному, компьютеру.

Рисунок 3 – Простая сеть с топологией «звезда»

В сетях с топологией «звезда» подключение кабеля и управление конфигурацией сети централизованы. Но есть и недостаток: так как все компьютеры подключены к центральной точке, для больших сетей значительно увеличивается расход кабеля. К тому же, если центральный компонент выйдет из строя, нарушится работа всей сети.

А если выйдет из строя только один компьютер (или кабель, соединяющий его с концентратором), то лишь этот компьютер не сможет передавать или принимать данные по сети. На остальные компьютеры в сети это не повлияет.

Топология «звезда» на сегодняшний день стала основной при построении локальных сетей. Это произошло благодаря ее многочисленным достоинствам:

  1. выход из строя одной рабочей станции или повреждение ее кабеля не отражается на работе всей сети в целом;
  2. отличная масштабируемость: для подключения новой рабочей станции достаточно проложить от коммутатора отдельный кабель;
  3. легкий поиск и устранение неисправностей и обрывов в сети;
  4. высокая производительность;
  5. простота настройки и администрирования;
  6. в сеть легко встраивается дополнительное оборудование.

Однако, как и любая топология, «звезда» не лишена недостатков:

  1. выход из строя центрального коммутатора обернется неработоспособностью всей сети;
  2. дополнительные затраты на сетевое оборудование – устройство, к которому будут подключены все компьютеры сети (коммутатор);
  3. число рабочих станций ограничено количеством портов в центральном коммутаторе.

Рассмотрев основные топологии построения кабельной системы, их достоинства и недостатки, было принято решение использовать топологию «звезда». При выборе подходящего и надежного коммутатора данная топология будет наилучшим решением для построения малой сети кабинета информатики.

1.4.4 Комбинированные топологии

В настоящее время часто используются топологии, которые комбинируют компоновку сети по принципу шины, звезды и кольца.

1.4.4.1 Топология звезда-шина

Звезда-шина – это комбинация топологий «шина» и «звезда». Чаще всего это выглядит так: несколько сетей с топологией «звезда» объединяются при помощи магистральной линейной шины (рисунок 4).

В этом случае выход из строя одного компьютера не оказывает никакого влияния на сеть – остальные компьютеры по-прежнему взаимодействуют друг с другом. А выход из строя концентратора повлечёт за собой остановку подключённых к нему компьютеров и концентраторов.

Рисунок 4 – Сеть с топологией «звезда-шина»

1.4.4.2 Топология звезда-кольцо

Звезда-кольцо кажется несколько похожей на звезду-шину. И в той, и в другой топологии компьютеры подключены к концентратору, который фактически и формирует кольцо или шину. Отличие в том, что концентраторы в звезде-шине соединены магистральной линейной шиной, а в звезде-кольце на основе главного концентратора они образуют звезду (рисунок 5).

Рисунок 5 – Сеть с топологией «звезда-кольцо»

Рассмотренные комбинированные топологии применяться в проекте не будут, так как они больше подходят для больших сетей, а использование их в малых считается нецелесообразным и более дорогим.

2 Выбор сетевого оборудования

Для совместной работы с файлами, необходим отдельный компьютер, который будет выполнять обязанности файлового сервера. На нем будут храниться документы, доступ к которым будет обеспечен компьютерам сети. Кроме этого понадобится коммутатор, чтобы соединить несколько компьютеров в один сегмент. Далее стоит отметить, что одним из требований к ЛВС было наличие Wi-Fi. Чтобы его обеспечить, необходимо использовать Wi-Fi роутер. Кроме того для прокладки сети будет необходим сам кабель и розетки, а также короба, чтобы защитить провода от повреждений. Для сетевого оборудования понадобится шкаф.

Итак, можно сделать вывод, что для создания локальной сети потребуется следующее оборудование:

  1. файловый сервер;
  2. коммутатор;
  3. Wi - Fi роутер;
  4. сетевой кабель;
  5. короба;
  6. информационные розетки;
  7. коммутационный шкаф;
  8. конечное сетевое оборудование – компьютеры и ноутбуки.

2.1 Подбор маршрутизатора

Маршрутизатор (роутер) – сетевое устройство, используемое в компьютерных сетях передачи данных, которое, на основании информации о топологии сети (таблицы маршрутизации) и определённых правил, принимает решения о пересылке пакетов сетевого уровня модели OSI их получателю. Обычно применяется для связи нескольких сегментов сети.

Существует 2 вида маршрутизаторов: программный и аппаратный (программно-аппаратный). В первом случае он является частью операционной системы одного из компьютеров сети, во втором случае - специальным вычислительным устройством.

Аппаратный маршрутизатор – специализированное устройство, собранное на узкоспециализированном процессоре RISC или ARM, объединяющее в отдельном корпусе множество маршрутизирующих модулей.

Программный маршрутизатор – это рабочая станция или выделенный сервер, имеющий несколько сетевых интерфейсов и снабженный специальным программным обеспечением, настроенным на маршрутизацию.

Не смотря на то, что программный маршрутизатор обладают более гибким функционалом, чем аппаратный, в данном проекте он применяться не будет, так является менее надежным и более сложным в использовании. Так же к нему пришлось бы докупать адаптер Wi - Fi . Программный маршрутизатор требует того, чтобы компьютер, на котором он установлен был включенным, а это влечет лишние затраты на электроэнергию.

В отличие от коммутаторов и мостов, в таблицах маршрутизации этих устройств записываются номера подсетей, а не MAC-адреса. Вторым отличием является активный обмен с другими маршрутизаторами информацией о топологии связей в подсетях, их пропускная способность и состояние каналов.

Основные требования, которые предъявляются к маршрутизатору в проекте – это функциональность и скорость работы.

Требование скорости работы маршрутизатора важно, так как к нему будет подключено одновременно несколько компьютеров.

Функциональность характеризуется набором поддерживаемых сетевых протоколов, протоколов маршрутизации, портов, наличие Wi -fi . Она достигается с помощью использования модульной конструкции, когда в одно шасси устанавливается несколько блоков с портами определенного типа.

Благодаря технологии Wi - Fi можно осуществлять выход с ноутбуков, КПК, сотовых телефонов и других устройств, оборудованных приемниками Wi - Fi в интернет без подключения сетевого кабеля.

Wi - Fi позволяет развивать сеть без весомых материальных затрат путем добавления точек доступа и приемников.

Преимущества Wi-Fi:

  1. Позволяет развернуть сеть без прокладки кабеля, может уменьшить стоимость развёртывания и расширения сети. Места, где нельзя проложить кабель, например, вне помещений и в зданиях, имеющих историческую ценность, могут обслуживаться беспроводными сетями.
  2. Wi-Fi-устройства широко распространены на рынке. А устройства разных производителей могут взаимодействовать на базовом уровне сервисов.
  3. Wi-Fi сети поддерживают роуминг, поэтому клиентская станция может перемещаться в пространстве, переходя от одной точки доступа к другой.
  4. Wi-Fi – это набор глобальных стандартов. В отличие от сотовых телефонов, Wi-Fi оборудование может работать в разных странах по всему миру.

Недостатки Wi-Fi:

  1. Частотный диапазон и эксплуатационные ограничения в различных странах неодинаковы. Обычно Wi - Fi -роутер работает в диапазоне 2.4 GHz, также в этом диапазоне работает множество других устройств, таких как устройства, поддерживающие Bluetooth, это ухудшает электромагнитную совместимость.
  2. Довольно высокое по сравнению с другими стандартами потребление энергии, что уменьшает время жизни батарей и повышает температуру устройства.
  3. Наложение сигналов закрытой или использующей шифрование точки доступа и открытой точки доступа, работающих на одном или соседних каналах может помешать доступу к открытой точке доступа. Эта проблема может возникнуть при большой плотности точек доступа.

2.1.1 Выбор маршрутизатора

Для сравнения было взято три аппаратных роутера от разных фирм-производителей – D -Link , TP -Link , Asus – приблизительно равной стоимости. Данные о них приведены в таблице 2.

Таблица 2 – Сравнение характеристик маршрутизаторов

Название

D-Link DIR-506L

TP-Link TL-WR940N

Asus RT-N53

Пропускная способность

Защита информации

WPA и WPA2, (WPS) PBC/PIN

WEP, WPA, WPA2, 802.1x

64-bit WEP, 128-bit WEP, WPA2-PSK, WPA-PSK, WPA-Enterprise, WPA2-Enterprise, WPS support

Наличие Wi-Fi

Скорость портов

10/100 Мбит/сек

100 Мбит/сек

100 Мбит/сек

Межсетевой экран (FireWall)

NAT, DHCP-сервер

Статическая маршрутизация

Web- интерфейс

На основе браузера

Количество портов

Размеры (ШхВхГ)

102,9x79,8x22,3мм

200x28x140мм

172x145x60мм

По итогу сравнения был выбран маршрутизатор TP-Link TL-WR940N имеющий подходящие для данной сети характеристики и сравнительно невысокую стоимость. Паспорт данного устройства представлен в приложении А.

2.2 Подбор коммутатора

Устройства канального уровня, которые позволяют соединить несколько физических сегментов локальной сети в одну большую сеть. Коммутация локальных сетей обеспечивает взаимодействие сетевых устройств по выделенной линии без возникновения коллизий, с параллельной передачей нескольких потоков данных.

Одной из главных характеристик для коммутатора является количество портов, оно определяет количество соединяемых компьютеров.

В качестве коммутационного оборудования был выбран коммутатор, а не концентратор, так как по цене они практически не различаются, но коммутаторы имеют ряд преимуществ:

1) повышение пропускной способности сети (коммутатор имеет способность «запоминать» адрес каждого компьютера, подключённого к его портам и действовать как регулировщик – только передавать данные на компьютер адресата и ни на какие другие, так же устраняются ненужные передачи и тем самым освобождается сетевая пропускная способность);

2) коммутаторы предоставляют каждому узлу сети выделенную пропускную способность протокол.

2.2.1 Выбор метода коммутации

В коммутаторах локальных сетей могут быть реализованы различные методы передачи кадров.

Коммутация с промежуточным хранением (store-and-forward) -коммутатор копирует весь принимаемый кадр в буфер и производит его проверку на наличие ошибок. Если кадр содержит ошибки (не совпадает контрольная сумма, или кадр меньше 64 байт или больше 1518 байт), то он отбрасывается. Если кадр не содержит ошибок, то коммутатор находит адрес приемника в своей таблице коммутации и определяет исходящий интерфейс. Затем, если не определены никакие фильтры, он передает этот кадр приемнику. Этот способ передачи связан с задержками - чем больше размер кадра, тем больше времени требуется на его прием и проверку на наличие ошибок.

Коммутация без буферизации (cut-through) - коммутатор локальной сети копирует во внутренние буферы только адрес приемника (первые 6 байт после префикса) и сразу начинает передавать кадр, не дожидаясь его полного приема. Это режим уменьшает задержку, но проверка на ошибки в нем не выполняется. Существует две формы коммутации без буферизации:

Коммутация с быстрой передачей (fast-forward switching) - эта форма коммутации предлагает низкую задержку за счет того, что кадр начинает передаваться немедленно, как только будет прочитан адрес назначения. Передаваемый кадр может содержать ошибки. В этом случае сетевой адаптер, которому предназначен этот кадр, отбросит его, что вызовет необходимость повторной передачи этого кадра.

Коммутация с исключением фрагментов (fragment-free switching) - коммутатор фильтрует коллизионные кадры, перед их передачей. В правильно работающей сети, коллизия может произойти во время передачи первых 64 байт. Поэтому, все кадры, с длиной больше 64 байт считаются правильными. Этот метод коммутации ждет, пока полученный кадр не будет проверен на предмет коллизии, и только после этого, начнет его передачу. Такой метод коммутации уменьшает количество пакетов передаваемых с ошибками.

Для использования в небольшой школьой сети, предпочтительнее всего коммутатор с коммутацией промежуточного хранения – store-and-forward.

2.2.2 Выбор класса коммутатора

Для того чтобы выбрать коммутатор, оптимально подходящий под нужды сети, нужно знать его уровень. Этот параметр определяется на основании того, какую сетевую модель OSI (передачи данных) использует устройство.

Устройства первого уровня, использующие физическую передачу данных, уже практически исчезли с рынка. Пример физического уровня – хабы, у которых информация передается сплошным потоком.

Уровень 2. К нему относятся практически все неуправляемые коммутаторы. Используется так называемая канальная сетевая модель. Устройства разделяют поступающую информацию на отдельные пакеты (кадры, фреймы), проверяют их и направляют конкретному девайсу-получателю. Основа распределения информации в коммутаторах второго уровня - MAC-адреса. Из них свитч составляет таблицу адресации, запоминая, какому порту какой MAC-адрес соответствует. IP-адреса они не понимают.

Уровень 3 . Данный коммутатор уже работает с IP-адресами, а также может преобразовывать логические адреса в физические. На третьем, сетевом уровне передачи данных, работают практически все маршрутизаторы и наиболее «продвинутая» часть коммутаторов.

Уровень 4 . Сетевая модель OSI, которая здесь используется, называется транспортной . Даже не все роутеры выпускаются с поддержкой этой модели. Распределение трафика происходит на интеллектуальном уровне – устройство умеет работать с приложениями и на основании заголовков пакетов с данными направлять их по нужному адресу. Кроме того, протоколы транспортного уровня, к примеру TCP, гарантируют надежность доставки пакетов, сохранение определенной последовательности их передачи и умеют оптимизировать трафик.

Так как сеть не требует специальных возможностей и для устройства не предусмотрена постановка сложных задач, то вполне подойдет канальный коммутатор второго уровня.

2.2.3 Выбор коммутатора для решения поставленных задач

Исходя из количества рабочих мест, коммутатор должен иметь не менее 16 портов. Проведя анализ оборудования на рынке (таблица 3). Был выбран коммутатор TP -Link TL -SG 3216, как лидер по соотношению цена/производительность.

Таблица 3 – Сравнительная таблица коммутаторов 2 уровня

Название

D-Link DES-3200-18/B1A

TP-Link TL-SG3216

HP 1910-16G Switch (JE005A)

Производитель

Количество портов

Скорость портов коммутатора

10/100/1000 Мбит/сек

10/100/1000 Мбит/сек

10/100/1000 Мбит/сек

Размер таблицы MAC адресов

Рабочая температура

от 0°C до +40°С

от 0°C до +40°С

от 0°C до +45°С

Размеры (ШxВxГ)

228.5x195x44 мм

440х220х44мм

442x160x432мм

Метод коммутации

store-and-forward

store-and-forward

store-and-forward

2.3 Файловый сервер

Файловый сервер – это выделенный сервер, оптимизированный для выполнения файловых операций ввода-вывода и предназначенный для хранения файлов любого типа. Как правило, обладает большим объемом дискового пространства. Его наличие в сети позволяет повысить скорость обмена данными, повысить надежность хранения информации.

Для повышения отказоустойчивости файлового сервера так же необходимо приобрести источник бесперебойного питания.

При выборе сервера следует обратить внимание на такие характеристики как:

  1. производительность процессора;
  2. объем оперативной памяти;
  3. скорость жесткого диска;
  4. отказоустойчивость.

2.4 Рабочая станция

Настольный компьютер (рабочая станция), подключенный к сети, является самым универсальным узлом. Прикладное использование компьютера в сети определяется программным обеспечением и установленным дополнительным оборудованием.

Учебные компьютеры отличаются от игровых пониженной ценой за счет уменьшения возможностей компьютера. Их комплектация сбалансирована таким образом, чтобы всегда было комфортно работать с необходимыми приложениями.

Так как на файловый сервер не будет ложиться слишком большая нагрузка, в качестве него будет использоваться компьютер с такими же параметрами, как и у рабочих станций. Характеристики выбранных компьютеров приведены в приложении В.

2.5 Выбор ноутбука

По заданию технического проекта, в локальной сети должны присутствовать не только стационарные, но и портативные компьютеры (ноутбуки).

Так как ноутбук будет использоваться исключительно в учебных целях, высокая производительность от него не потребуется. По сочетанию цены и качества прекрасно подойдет ноутбук Lenovo B590, характеристики которого приведены в приложении Г.

2.6 Обзор и выбор сетевого кабеля

Для локальных сетей существует три принципиальные схемы соединения: с помощью витой пары, коаксиального или волоконно-оптического кабеля. Для передачи информации так же могут использоваться спутники, лазеры, микроволновое излучение и тому подобное, однако они выходят за область рассмотрения данного дипломного проекта, так как требуется организовать простую в реализации и эксплуатации, а также дешевую локальную сеть.

2.6.1 Коаксиальный кабель

Коаксиальный кабель (коаксиал ) — электрический кабель , состоящий из расположенных соосно центрального проводника и экрана. Обычно служит для передачи высокочастотных сигналов. Состоит из двух цилиндрических проводников, соответственно вставленных один в другой (рисунок 6). Чаще всего используется центральный медный проводник, покрытый пластиковым изолирующим материалом, поверх которого идёт второй проводник — медная сетка или алюминиевая фольга. Благодаря совпадению центров обоих проводов потери на излучение практически отсутствуют; одновременно обеспечивается хорошая защита от внешних электромагнитных помех. Поэтому такой кабель обеспечивает передачу данных на большие расстояния и использовался при построении компьютерных сетей (пока не был вытеснен витой парой). Используется в сетях кабельного телевидения и во многих других областях.

Рисунок 6 – Коаксиальный кабель

Коаксиальный кабель не может быть использован при построении данной локальной сети, ввиду следующих причин:

  1. Сетевые сегменты, основанные на витой паре гораздо стабильнее в работе сегментов на коаксиальном кабеле, поскольку в первом случае каждое устройство может быть изолировано хабом от общей среды, а во втором случае несколько устройств подключаются при помощи одного сегмента кабеля, и, в случае большого количества коллизий, концентратор может изолировать лишь весь сегмент;
  2. Коаксиальный кабель менее удобен для монтажа, чем витая пара;

2.6.2 Оптоволоконный кабель

Оптоволоконный кабель – кабель на о c нове оптоволокна. Оптоволокно – это стеклянная или пластиковая нить, используемая для переноса света внутри себя посредством полного внутреннего отражения (рисунок 12). Оптоволокна используются в оптоволоконной связи, которая позволяет передавать цифровую информацию на большие расстояния и с более высокой скоростью передачи данных, чем в электронных средствах связи. В ряде случаев они также используются при создании датчиков.

В связи используются многомодовые и одномодовые оптоволокна (рисунок 7). Многомодовое оптоволокно обычно используется на небольших расстояниях (до 500 м), а одномодовое оптоволокно — на длинных дистанциях. Из-за строгого допуска между одномодовым оптоволокном, передатчиком, приемником, усилителем и другими одномодовыми компонентами, их использование обычно дороже, чем применение многомодовых компонетов.

Рисунок 7 – Одномодовое и многомодовое оптоволокно

Не смотря на то, что оптоволокно может быть использовано не только как средство для дальней связи, но и построения компьютерной сети, использоваться при проектировании оно так же не может, так как одна из задач – минимизация расходов на построение сети, а оптоволокно значительно дороже, чем кабель витая пара. Поэтому использовать его не целесообразно, так как в данной сети не требуются сверхбольшие скорости передачи данных.

2.6.3 Витая пара

Витая пара в настоящее время является самой распространённой средой передачи и представляет собой пару свитых проводов. Кабель, составленный из нескольких витых пар, как правило, покрыт жёсткой пластиковой оболочкой, предохраняющей его от воздействия внешней среды и механических повреждений. Изображение витой пары представлена на рисунке 8.

Рисунок 8 – Кабель витая пара

В нормальных условиях витая пара поддерживает скорость передачи данных от 10 до 100 Мбит/с. Однако ряд факторов может существенно снизить скорость передачи данных, в частности, потеря данных, перекрёстное соединение и влияние электромагнитного излучения.

Для уменьшения влияния электрических и магнитных полей применяется экранирование (кабель из витых пар покрывается фольгой или оплёткой). Но после экранирования витой пары в значительной степени увеличивается затухание сигнала. Под затуханием сигнала подразумевается его ослабление при передаче из одной точки сети в другую. Экранирование изменяет сопротивление, индуктивность и ёмкость таким образом, что линия становится склонной к потере данных. Подобные потери могут сделать витую пару нежелательной и ненадёжной средой передачи. И экранированная, и неэкранированная витая пара используется для передачи данных на несколько сотен метров.

В соответствии со спецификациями ассоциации электронной и телекоммуникационной промышленности вводится пять стандартных категорий кабеля из витых пар. При определении категорий кабеля используется только неэкранированная витая пара (UTP).

  1. Кабель первой категории используется для передачи голосовых данных. С начала 80-х годов кабель САТ 1 используется в основном в качестве проводки телефонных линий. Кабель первой категории не сертифицирован для передачи данных любого типа и в большинстве случаев не рассматривается как среда для передачи цифровых данных, а значит для реализации проекта он не подойдет.
  2. Кабель второй категории используется для передачи информации со скоростью не более 4 Мбит/с. Этот тип проводки характерен для сетей устаревшей сетевой топологии, использующих протокол с передачей маркера. Кабель тактируется частотой 1 Мгц. Данная категория кабеля не может использоваться, так как не удовлетворяет требованиям проекта к скорости передачи данных;
  3. Кабель третьей категории в основном используется в локальных сетях с устаревшей архитектурой Ethernet 10base-T и сертифицирован для передачи данных со скоростью до 16 Мбит/с. Кабель тактируется частотой 16 МГц.
  4. Кабель четвёртой категории используется в качестве среды соединения сетей с кольцевой архитектурой или архитектурой 10base-T/100base-T. Кабель САТ 4 сертифицирован для передачи данных со скоростью до 16Мбит/с и состоит из четырёх витых пар. Тактируется частотой 20 МГц.
  5. Кабель пятой категории является самой распространённой средой передачи для Ethernet. Кабель поддерживает скорость передачи данных до 100Мбит/с и используется в сетях с архитектурой 100base-T и 10base-T. Кабель тактируется частотой 100 МГц.

На данный момент кабель витая пара категории 5е является наилучшим выбором для использования в локальных сетях как большого, так и малого размера. Он поддерживает наилучшую скорость передачи данных и также может использоваться в сетях с различными архитектурами. Именно поэтому он и будет использоваться при реализации проекта. Кабель имеет преимущества перед другими схемами соединения, так как обладает следующими достоинствами:

  1. Простота монтажа;
  2. Гибкость кабеля;
  3. Относительно невысокая стоимость при хороших показателях пропускной способности;
  4. Простота замены или наладки при повреждении.

В данном проекте будет использоваться кабель витая пара UTP категории 5e компании TopLan. Информация о кабеле приведена в приложении Д.

2.7 Выбор информационных розеток

Для данного проекта предусматривается по одной информационной розетке с одним розеточным модулем для каждого рабочего места с ноутбуком.

Тип розеточных модулей определяется с учетом требований по пропускной способности, конфигурации рабочего места и способа крепления. Розеточный модуль устанавливается на высоте 50 см от пола.

Для монтажа кабеля на рабочих местах выбраны стандартные розетки с одним разъёмом RJ-45 категории 5е. Для данного проекта будут использоваться розетки Logicpower (LP-212) данные о которых приведены в приложении Д.

2.8 Выбор монтажного оборудования

2.8.1 Шкаф для коммутационного оборудования

Исходя из того, что для аппаратуры не потребуется отдельное помещение, всё оборудование будет монтироваться в настенный коммутационный шкаф, в качестве которого будет использоваться ЦМО ШРН 9.650 со стеклянной дверью. Данный шкаф выбран, так как он хорошо подходит к габаритам оборудования, имеет невысокую стоимость, а также имеет точечный замок.

Все необходимые характеристики коммутационного шкафа приведены в приложении Е.

2.8.2 Кабель-канал

Для прокладки и защиты кабелей будут использоваться стандартные пластиковые короба двух видов. Для прокладки по полу будет применяться декоративный канал DKC СSP-N 75x17 G. Для подведения кабелей по стене к коммутационному шкафу – кабель-канал DKC 01050.

Данные о коробах приведены в приложении Е.

Общая стоимость сетевого оборудования и расходных материалов

Все данные о стоимости и количестве оборудования, необходимого для создания локальной вычислительной сети приведены в таблице 3.

Таблица 3 – Стоимость и количество оборудования

Наименование

Количество, шт.

Цена, руб.

Стоимость

Маршрутизатор

Коммутатор

Системный блок

Клавиатура

Катушка кабеля «Витая пара»

Информационная розетка

Монтажный шкаф

Напольный кабель-канал

Настенный кабель-канал

267154 без коробов

3 ПРОЕКТНАЯ ЧАСТЬ

3.1 Разработка модели сети

При проектировании сети в первую очередь разрабатывается наглядная модель сети с привязкой к имеющимся планам и инженерным конструкциям. Данное действие позволяет:

  1. Определиться в каком месте будет установлено коммуникационное оборудование.
  2. Выбрать с учётом имеющихся коммуникаций наименьшее расстояние для прокладки коммуникационных кабелей.
  3. Учитывая масштаб плана, позволяет рассчитать приблизительную длину каждого кабельного сегмента.

Для разработки модели выбран метод имитационного моделирования, поскольку он в большей степени соответствует предъявляемым требованиям по адекватности и сложности.

В качестве программы для разработки имитационной модели сети выбрана программа Microsoft Visio .

Схема кабинета информатики изображена в приложении Ж.

3.2 Построение локальной сети с привязкой к плану-схеме здания

Виртуальная сеть кабинета изолирована от остальных компьютеров в школе. Все кабели укладываются в кабель-каналы и прокладываются по полу. Серверная комната для оборудования не предусматривается, так как сеть небольшая и коммуникационный шкаф установлен непосредственно в кабинете. В шкаф установлены коммутатор и маршрутизатор. В кабинете расположено шесть ноутбуков и пять компьютеров, один из которых является файл-сервером. Максимальная дальность сегментов ЛВС до коммутационного оборудования не превышает 70 метров, что соответствует требованию стандарта EIA /TIA -568-В передачи данных на скорости 100 Мбит/с.

Сеть строится по топологии «Звезда» с использованием 1 коммутатора и 1 маршрутизатора. Логическая и физическая схема построения сети изображены в приложении И.

3.3 Расчет длины кабеля

На рабочих местах с ноутбуками для удобства устанавливается внешняя компьютерная розетка. Всего устанавливается 6 розеток по количеству ноутбуков. К каждому рабочему месту от шкафа прокладывается кабель «неэкранированная витая пара категории 5e » (UTP).

Для подключения ноутбуков к розеткам используются коммутационные шнуры длиной один метр. Количество данных шнуров так же равно шести, для каждой розетки.

Прокладка кабеля выполняется по полу в кабель-каналах. Коммутационный шкаф устанавливается непосредственно в кабинете на высоте 2 метра от пола.

Общая длина кабеля будет равна сумме длин кабеля от каждого рабочего места до коммутационного шкафа. Так как она не может быть вычислена эмпирически ввиду малого размера сети, будет использоваться теоретический способ, на основе плана кабинета. Расчет длины кабеля представлен в таблице 10. Так как метод вычисления не является точным, поэтому для каждого кабеля берется запас 0,5 м. Номера компьютеров берутся в соответствии с приложением И рисунок 2.

Таблица 10 – Расчет длины кабеля

Номер компьютера

Длина кабеля, м

N1+2. 5= 7

N2+2=9

N4+ 2.5=9.5

N5+2=11.5

N6+1=12.5

N8+2.5=11.5

N9+2=13.5

N11+1=14.5

Итого:

При суммировании всех кабельных сегментов без учета коммутационных шнуров, длина получилась не более 97 метров. Так как кабель витая пара продаётся бухтами по 305 метров, можно вычислить нужное количество этих бухт по формуле 1:

N =L /l (1)

где N – количество бухт, шт.;

L – длина всего кабеля, необходимого для прокладки сети, м.;

l – длина кабеля в одной бухте, м.

Подставив соответствующие значения в формулу получилось следующее выражение:

N =97/305=1 шт.

Из него следует, что для организации сети потребуется 1 катушка витой пары.

3.4 Логическая организация сети

В качестве технологии доступа был выбран Fast Ethernet , обеспечивающий скорость обмена данными в 100 Мбит/с.

В качестве подвида данной технологии был выбран 100BASE-TX, IEEE 802.3u – развитие стандарта 10BASE-T для использования в сетях топологии «звезда». Задействована витая пара категории 5: CAT5e – скорость передач данных до 100 Мбит/с. Кабель категории 5e является самым распространённым и используется для построения компьютерных сетей.

3.5 Формирование адресной структуры сети

Для формирования адресного пространства данной сети выбраны IP -адреса класса С (адреса из диапазона от 192.0.0.0 до 223.255.255.0). Маска подсети имеет вид 255.255.255.0. Первые 3 байта формируют номер сети, последний байт формирует номер узла.

Имеется ряд IP-адресов, которые зарезервированы для использования только в локальных сетях. Пакеты с такими адресами не передаются маршрутизаторами Интернета. В классе С к таким IP-адресам относятся адреса от 192.168.0.0 до 192.168.255.0.

Поэтому для локальной сети школы назначаем следующие IP-адреса:

  1. Файловый сервер – 192.168.1.1;
  2. точка доступа Wi - Fi – 192.168.1.5;
  3. учебные компьютеры в кабинете информатики имеют IP -адреса от 192.168.1.10 до 192.168.1.20;

3.6 Рабочее место

3.6.1 Общие положения

Рабочими местами называют пространства в здании, где пользователи взаимодействуют с телекоммуникационными устройствами. Особенностью проектирования рабочего места является поиск наиболее удобного варианта как для работы пользователей, так и для нормального функционирования телекоммуникационного оборудования.

Компоненты рабочего места располагают между точкой окончания горизонтальной кабельной подсистемы на телекоммуникационной розетке и активным оборудованием рабочего места. К активному оборудованию рабочего места относят электронные устройства, такие как телефонные аппараты, терминалы систем обработки данных, компьютеры и другие. Эффективность кабельной системы рабочего места оказывает значительное влияние на работу распределительной системы. Особенностью кабельной системы рабочего места является ее непостоянство и возможность довольно легко вносить в нее изменения.

К элементам рабочего места относятся:

  1. телекоммуникационная розетка или многопользовательская телекоммуникационная розетка;
  2. аппаратные кабели (шнуры);
  3. адаптеры, конвертеры, разветвители;
  4. телекоммуникационное оборудование (телефонные аппараты, компьютеры, модемы, терминалы и т.п.).

Активное телекоммуникационное оборудование и адаптеры (конвертеры, разветвители) не считаются частью телекоммуникационной кабельной системы.

3.6.2 Телекоммуникационная розетка

Телекоммуникационные розетки служат для подключения активного телекоммуникационного оборудования пользователей на рабочих местах и являются физическим окончанием горизонтальной кабельной подсистемы.

Телекоммуникационная розетка одновременно является элементом и горизонтальной кабельной подсистемы, и рабочего места.

Телекоммуникационные розетки, используемые на рабочих местах, должны соответствовать требованиям, приведенным в ГОСТ Р 53246-2008 .

Кабели горизонтальной подсистемы будут прокладываться на рабочие места в избыточном количестве с целью создания запаса для возможных подключений в будущем. Окончания таких кабелей будут укладываться в монтажных коробках розеток, закрытых глухими крышками.

Кабели горизонтальной подсистемы, проложенные до рабочих мест и не терминированные на телекоммуникационных розетках, не входят в состав СКС.

Схемы разводки телекоммуникационной розетки будут соответствовать стандарту Т568В.

На рисунке 12 показано назначение контактов гнезда телекоммуникационной розетки для схемы разводки Т568В. Цвета проводников приведены относительно схемы цветового кодирования 4-парного кабеля горизонтальной подсистемы.

Рисунок 12 - Назначение контактов в схеме разводки Т568В

Допускается одновременно использование в одной СКС двух схем разводки – Т568В и Т568A , но вследствие возможных ошибок при монтаже, эксплуатации и подключении активного оборудования к кабельной системе не рекомендуется, и поэтому применяться не будет.

3.6.3 Аппаратные шнуры рабочего места

Аппаратные шнуры на основе витой пары проводников используемые для подключения активного оборудования к телекоммуникационной розетке на рабочем месте в модели канала горизонтальной кабельной подсистемы, соответствуют требованиям ГОСТ Р 53246-2008.

Кабельная система рабочего места может меняться в зависимости от конкретного приложения. Для этого будет использоваться шнур с одинаковыми коннекторами на обоих концах.

Специализированные устройства, предназначенные для поддержания работы конкретных приложений, не будут использоваться как часть горизонтальной кабельной подсистемы и, в случае необходимости применения, будут устанавливаться за пределами телекоммуникационной розетки.

3.6.4 Места монтажа телекоммуникационных розеток

Телекоммуникационная розетка – узел, состоящий из трех элементов: установочной коробки, монтажной рамки и коннектора.

Коннектор, или модуль (розеточный модуль), представляет собой телекоммуникационное гнездо, установленное в корпус модуля или на его печатную плату и соединенное электрически с гнездом коннектора типа IDС, предназначенное для терминирования (физического окончания) кабелей горизонтальной подсистемы.

Телекоммуникационная розетка будет состоять из двух коннекторов, так как рассчитана на подключение портативного оборудования.

Монтажная рамка, которая часто одновременно служит и декоративной лицевой панелью, служит для монтажа модуля в установочной коробке.

Установочная коробка телекоммуникационной розетки служит местом перехода между кабелем горизонтальной подсистемы и аппаратным кабелем рабочего места. Крепиться она будет непосредственно на периметральной трассе (кабельном коробе).

Телекоммуникационная розетка будет надежно закреплена на месте с помощью средств и методов, определенных инструкциями изготовителя, и обеспечивать защиту окончаний, поддержание требуемых радиусов изгиба и хранение рекомендуемого запаса кабеля горизонтальной подсистемы.

3.6.5 Плотность монтажа розеток

Как минимум одна установочная коробка для монтажа телекоммуникационных розеток отведена на каждое рабочее место.

При планировании мест расположения телекоммуникационных розеток будет использоваться среднее значение площади рабочего места в 5 метров с учетом создания максимально возможной гибкости при выполнении изменений в конфигурации рабочего места.

3.6.6 Правила выбора мест расположения розеток

Места расположения телекоммуникационных розеток будут координироваться с планом расположения мебели в кабинете на расстоянии не более стандартной длины аппаратного шнура активного оборудования рабочего места от места его расположения.

На рабочем месте запрещена открытая прокладка (вне закрытых трасс) кабеля горизонтальной подсистемы до установочной телекоммуникационной коробки/розетки.

Розетки офисной системы электроснабжения будут устанавливаться вблизи установочной коробки телекоммуникационной розетки на одной высоте в пределах 1 метра.

3.6.7 Трассы и пространства мебели

Коэффициент заполнения мебельной трассы рассчитывают в процентах делением суммарной площади поперечного сечения кабелей на площадь поперечного сечения трассы в самом «узком» ее месте. На стадии проектирования системы мебельных трасс будет использоваться коэффициент заполнения не более 40%.

На значение коэффициента заполнения оказывают влияние такие факторы, как спиралевидное пространственное расположение кабелей в канале, места сопряжения трасс, допустимые радиусы изгиба кабелей и пространство, занимаемое розетками и коннекторами. Предпочтительным методом определения реальной емкости мебельной трассы является пробный монтаж.

Мебельные каналы, используемые для прокладки телекоммуникационных кабельных систем, будут обеспечивать площадь поперечного сечения не менее 10 сантиметров. Эта площадь рассчитана на использование типовых 4-парных кабелей при коэффициенте заполнения 33%.

Минимальный размер трассы должен определяться на основе требования к радиусу изгиба кабелей – 25 мм при максимально допустимом коэффициенте заполнения. В нашем проекте кабель будет монтироваться методом укладки, а не протягивания, поэтому не потребуется использование скругленных углов и поворотов.

3.7 Программные средства для организации сети

В качестве операционной системы сервера будет использоваться Windows Server 2008 R 2, которая является наиболее надежной и безопасной операционной системой в семействе серверных ОС Windows, что является необходимым условием для сервера.

Windows Server 2008 R2 – серверная операционная система компании « Microsoft », являющаяся усовершенствованной версией Windows Server 2008 . Поступила в продажу 22 октября 2009 . Как и Windows 7, Windows Server 2008 R2 использует ядро Windows NT 6.1. Новые возможности включают улучшенную виртуализацию, новую версию Active Directory , Internet Information Services 7.5 и поддержку до 256 процессоров. Это первая ОС Windows, доступная только в 64-разрядном варианте.

В Windows Server 2008 R2 имеются средства для анализа состояния и диагностики операционной системы, так же данная серверная операционная система предлагает целый ряд новых технических возможностей в области безопасности, управления и администрирования, разработанных для повышения надежности и гибкости работы сервера.

Стоимость: 36 000,00 руб.

Рисунок 13 – Windows Server 2008 R2

В качестве ОС на рабочих станциях оставляется установленная ранее Windows 7.

Операционная система Windows 7:

  1. обеспечивает высокий уровень масштабируемости и надежности;
  2. обеспечивает более высокий уровень безопасности, включая возможность шифрования файлов и папок с целью защиты корпоративной информации;
  3. обеспечивает поддержку мобильных устройств для обеспечения возможности работать автономно или подключаться к компьютеру в удаленном режиме;
  4. обеспечивает встроенную поддержку высокопроизводительных многопроцессорных систем;
  5. обеспечивает возможность работы с сервером Microsoft Windows Server R 2;
  6. обеспечивает эффективное взаимодействие с другими пользователями по всему миру благодаря возможностям многоязычной поддержки.

Кроме этого, на все компьютеры необходимо поставить антивирусную программу ESET NOD32 Business Edition.

Эта антивирусная программа была выбрана по следующим причинам:

1) Проактивная защита и точное обнаружение угроз. Антивирус ESET NOD32 разработан на основе передовой технологии ThreatSense®. Ядро программы обеспечивает проактивное обнаружение всех типов угроз и лечение зараженных файлов (в том числе, в архивах) благодаря широкому применению интеллектуальных технологий, сочетанию эвристических методов и традиционного сигнатурного детектирования.

2) Host Intrusion Prevention System (HIPS). Усовершенствованная система защиты от попыток внешнего воздействия, способных негативно повлиять на безопасность компьютера. Для мониторинга процессов, файлов и ключей реестра HIPS используется сочетание технологий поведенческого анализа с возможностями сетевого фильтра, что позволяет эффективно детектировать, блокировать и предотвращать подобные попытки вторжения.

3) Высокая скорость работы. Работа Антивируса ESET NOD32 не отражается на производительности компьютера – сканирование и процессы обновления происходят практически незаметно для пользователя, не нагружая систему.

4) Удобство. Антивирус ESET NOD32 разработан по принципу минимальной нагрузки на систему и занимает не более 44 Мб памяти.

5) Простота использования.

Стоимость: 28 586 р.

В результате анализа стоимости программного обеспечения получена следующая таблица:

3.8 Защита сети

Для нормального и бесперебойного функционирования сети необходимо обеспечить ее безопасность. Специализированные программные средства защиты информации от несанкционированного доступа обладают в целом лучшими возможностями и характеристиками, чем встроенные средства сетевых ОС. Кроме программ шифрования, существует много других доступных внешних средств защиты информации. Из наиболее часто упоминаемых, следует отметить следующие системы, позволяющие ограничить информационные потоки.

  1. Firewalls – брандмауэры (дословно firewall – огненная стена). Между локальной и глобальной сетями создаются специальные промежуточные сервера, которые инспектируют и фильтруют весь проходящий через них трафик сетевого/ транспортного уровней. Это позволяет резко снизить угрозу несанкционированного доступа извне в корпоративные сети, но не устраняет эту опасность совсем. Более защищенная разновидность метода – это способ маскарада (masquerading), когда весь исходящий из локальной сети трафик посылается от имени firewall-сервера, делая локальную сеть практически невидимой.
  2. Proxy-servers (proxy – доверенность, доверенное лицо). Весь трафик сетевого / транспортного уровней между локальной и глобальной сетями запрещается полностью – попросту отсутствует маршрутизация, а обращения из локальной сети в глобальную происходят через специальные серверы-посредники. Очевидно, что при этом методе обращения из глобальной сети в локальную становятся невозможными. Очевидно также, что этот метод не дает достаточной защиты против атак на более высоких уровнях – например, на уровне приложения (вирусы и JavaScript).
  3. Антивирусная программа (антивирус) – изначально программа для обнаружения и лечения программ, заражённых компьютерным вирусом, а также для предотвращения заражения файла вирусом. Многие современные антивирусы позволяют обнаруживать и удалять также троянские программы и прочие вредоносные программы. И напротив – программы, создававшиеся как файрволы, также обретают функции, роднящие их с антивирусами (например, Outpost Firewall), что со временем может привести к ещё более очевидному распространению смысла термина на средства защиты вообще.

В нашей сети будет использоваться антивирусная программа ESET NOD32 Business Edition.

3.9 Отказоустойчивость

Отказоустойчивость – это один из основных факторов, который нужно учитывать при построении локальных сетей.

В случае выхода сети школы из строя возможны нарушение работы сотрудников, потеря данных. В таблице 11 приведены различные неисправности и их последствия.

Таблица 11 – Возможные неисправности и их последствия

Неисправность

Возможная причина

Последствия для сети

Решение проблемы

Меры предотвращения

Выход и строя главного коммутатора

Выход из строя всей сети.

Замена коммутатора.

Выход и строя коммутатора в одном из отделов.

Механическая неисправность; неправильная эксплуатация.

Выход из строя сегмента сети.

Замена коммутатора.

Правильная эксплуатация; наличие запасного коммутатора.

Выход из строя сервера.

Механическая неисправность; неправильная эксплуатация; отказ комплектующих сервера.

Вероятность потери всех данных; пропадает возможность централизованного хранения данных.

Ремонт сервера (возможна замена комплектующих, или в крайнем случае полная замена сервера).

Подбор сервера, полностью справляющегося с потребностями фирмы; подбор комплектующих с повышенной надежностью.

Выход из строя компьютеров пользователей.

Механическая неисправность, деятельность вирусов, неправильная эксплуатация; конфликты ПО.

Пропадает возможность обмена данными с неисправным компьютером.

Ремонт клиентского компьютера.

Правильная эксплуатация: технические осмотры; наличие антивируса; ограничение прав пользователей.

Выход из строя модема, точки доступа, сетевого принтера.

Механическая неисправность; неправильная эксплуатация.

Ограничение функций неисправного оборудования (отсутствие Wi - Fi , выхода в Интернет…)

Замена оборудования.

Правильная эксплуатация: технические осмотры; наличие антивируса; наличие запасного оборудования.

Выход из строя сетевого кабеля

Механическое повреждение.

Выход из строя сети или ее части.

Замена сетевого кабеля.

Кабель должен находиться в коробах; наличие запасного кабеля.

Для того, что бы свести к минимуму вероятность отказа сети прибегают к нескольким средствам:

  1. дублирование блоков питания;
  2. возможность «горячей» замены компонентов;
  3. дублирование управляющего модуля;
  4. дублирование коммутационной матрицы / шины;
  5. использование нескольких дублирующих соединений;
  6. использование технологии Multi-Link Trunk (MLT) и Split-MLT;
  7. возможное внедрение протоколов балансировки нагрузки и дублирования на уровне маршрутизации;
  8. разнесение окончания каналов;
  9. разнесение каналов;
  10. использование высоконадежного оборудования.

Сеть, организуемая в проекте, обладает следующими преимуществами в плане отказоустойчивости:

  1. топологией сети является «звезда», что позволяет легко находить и устранять неисправности;
  2. в случае выхода из строя одной из рабочих станций, остальные пользователи продолжают функционировать в обычном режиме;
  3. применение антивирусного программного обеспечения позволяет обезопасить сеть от сбоев в случае атак вирусов.

Список использованных источников

  1. ГОСТ Р 53246-2008. Информационные технологии. Системы кабельные структурированные. Проектирование основных узлов системы. Общие требования

А также другие работы, которые могут Вас заинтересовать

3565. Послідовність рішення задачі по розробці програми 78 KB
Послідовність рішення задачі по розробці програми Послідовність рішення задачі по розробці програм складається з наступних етапів: Формулювання задачі в термінах деякої прикладної області знань, Формалізація задачі, побудова математичної та інформац...
3566. Основні визначення. Приклади алгоритмів 122 KB
Основні визначення. Приклади алгоритмів Аналіз (від др. греч. «розкладання, розчленовування») - операція уявного або реального розчленовування цілого (речі, властивості, процесу або відношення між предметами) на складові частини, виконуван...
3567. Апаратні та програмні складові електронно-обчислювальної машини. 46 KB
Апаратні та програмні складові електронно-обчислювальної машини. Персональний комп’ютер можна представити з допомогою двох невід’ємних складових частин: апаратна частина, програмне забезпечення. Апаратні складові частини можна розділити...
3568. Основи мови С# 302 KB
Основи мови С# Створення мови C# Не зважаючи на те, що курс Алгоритмізації та програмування, як одним із своїх компонентів, передбачає реалізацію розроблених алгоритмів на існуючих мовах програмування. Я хотів би зупинитися на деяких особливостях м...
3569. Типи даних C# 88.5 KB
Типи даних C# Цей розділ присвячений універсальній системі типів.NET Common Type System (CTS), яка знаходиться в центрі Microsoft .NET Framework. CTS визначає не тільки всі типи, але і правила, яким Common Language Runtime (CLR) слідує відносно ого...
3570. Синтаксис мови програмування C# 164.5 KB
Синтаксис мови програмування C# У цьому розділі ми розглянемо основу будь-якої мови програмування - його здатність виконувати привласнення і порівняння за допомогою операторів. Ми побачимо, які оператори є в С# і яке їх старшинство, а потім заг...
3571. Введення в C#. Створення консольних додатків 1.45 MB
Введення в C#. Створення консольних додатків Мова C# (вимовляється Си-Шарп) - це мова програмування від компанії Microsoft. Він входить у версію Visual Studio - Visual Studio.NET. Крім C# в Visual Studio.NET входять Visual Basic.NET й Visual C++. Од...
3572. Алгоритми роботи з цілими числами 54 KB
Тип ціле число є основним для будь-якої алгоритмічної мови. Зв"язано це з тим, що вміст комірки пам"яті або регістра процесора можна розглядати як ціле число. Адреси елементів пам"яті також являють собою цілі числа, з їхньою допомогою записуються машинні команди й т.д...
3573. Алгоритми роботи з дійсними числами 89.5 KB
Дійсні числа представляються в комп"ютері в так названої експонентної, або плаваючої, форми. Дійсне число r має вигляд

Запоследние годы произошло коренное изменение роли и места персональных компьютеров и информационных технологий в жизни общества. Современный период развития общества определяется как этап информатизации. Информатизация общества предполагает всестороннее и массовое внедрение методов и средств сбора, анализа, обработки, передачи, архивного хранения больших объемов информации на базе компьютерной техники, а также разнообразных устройств передачи данных, включая телекоммуникационные сети.

Концепция модернизации образования, проект «Информатизация системы образования» и, наконец, технический прогресс ставят перед образованием задачу формирования ИКТ - компетентной личности, способной применять знания и умения в практической жизни для успешной социализации в современном мире.

Процесс информатизации школы предполагает решение следующих задач:

· развитие педагогических технологий применения средств информатизации и коммуникации на всех ступенях образования;

· использование сети Интернет в образовательных целях;

· создание и применение средств автоматизации психолого-педагогических тестирующих, диагностирующих методик контроля и оценки уровня знаний обучаемых, их продвижения в учении, установления уровня интеллектуального потенциала обучающегося;

· автоматизация деятельности административного аппарата школы;

· подготовка кадров в области коммуникативно-информационных технологий.

Локальная сеть объединяет компьютеры, установленные в одном помещении (например, школьный компьютерный класс, состоящий из 8-12 компьютеров) или в одном здании (например, в здании школы могут быть объединены в локальную сеть несколько десятков компьютеров, установленных в различных предметных кабинетах).

Локальная вычислительная сеть, ЛВС (англ. Local Area Network, LAN) - компьютерная сеть, покрывающая относительно небольшую территорию.

В небольших локальных сетях все компьютеры обычно равноправны, т.е. пользователи самостоятельно решают, какие ресурсы своего компьютера (диски, каталоги, файлы) сделать общедоступными по сети. Такие сети называются одноранговыми.

Для увеличения производительности локальной сети, а также в целях обеспечения большей надежности при хранении информации в сети некоторые компьютеры специально выделяются для хранения файлов или программ-приложений. Такие компьютеры называются серверами, а локальная сеть - сетью на основе серверов.

Выбор структуры локальной сети школы

Типичная школьная локальная сеть выглядит следующим образом. Имеется одна точка выхода в Интернет, к которой подключается соответствующий маршрутизатор (ADSL или Ethernet). Маршрутизатор связан с коммутатором (свичем), к которому уже подключаются пользовательские ПК. На маршрутизаторе практически всегда активирован DHCP-сервер, что подразумевает автоматическую раздачу IP-адресов всем пользовательским ПК. Собственно, в таком решении есть как свои плюсы, так и минусы. С одной стороны, наличие DHCP-сервера упрощает процесс создания сети, поскольку нет необходимости вручную производить сетевые настройки на компьютерах пользователей. С другой стороны, в условиях отсутствия системного администратора вполне типична ситуация, когда никто не знает пароля доступа к маршрутизатору, а стандартный пароль изменен. Казалось бы, зачем вообще нужно «лезть» в маршрутизатор, если и так все работает? Так-то оно так, но бывают неприятные исключения. К примеру, количество компьютеров в школе увеличилось (оборудовали еще один класс информатики) и начались проблемы с конфликтами IP-адресов в сети. Дело в том, что неизвестно, какой диапазон IP-адресов зарезервирован на маршрутизаторе под раздачу DHCP-сервером, и вполне может оказаться, что этих самых IP-адресов просто недостаточно. Если такая проблема возникает, то единственный способ решить ее, не залезая при этом в настройки самого маршрутизатора, - это вручную прописать все сетевые настройки (IP-адрес, маску подсети и IP-адрес шлюза) на каждом ПК. Причем, дабы избежать конфликта IP-адресов, сделать это нужно именно на каждом ПК. В противном случае назначенные вручную IP-адреса могут оказаться из зарезервированного для раздачи DHCP-сервером диапазона, что со временем приведет к конфликту IP-адресов.

Другая проблема заключается в том, что все компьютеры, подключенные к коммутатору и соответственно имеющие выход в Интернет через маршрутизатор, образуют одну одноранговую локальную сеть, или просто рабочую группу. В эту рабочую группу входят не только компьютеры, установленные в школьном компьютерном классе, но и все остальные компьютеры, имеющиеся в школе. Это и компьютер директора, и компьютер завуча, и компьютеры секретарей, и компьютеры бухгалтерии (если таковая имеется в школе), и все остальные компьютеры с выходом в Интернет. Конечно, было бы разумно разбить все эти компьютеры на группы и назначить каждой группе пользователей соответствующие права. Но, как мы уже отмечали, никакого контроллера домена не предусмотрено, а потому реализовать подобное просто не удастся. Конечно, эту проблему можно было бы частично решить на аппаратном уровне, организовав несколько виртуальных локальных сетей (VLAN) и тем самым физически отделив ученические ПК от остальных компьютеров. Однако для этого нужен управляемый коммутатор (или хотя бы Smart-коммутатор), наличие которого в школе - большая редкость. Но даже если такой коммутатор и имеется, то нужно еще уметь настраивать виртуальные сети. Можно даже не использовать виртуальные сети, а установить дополнительный маршрутизатор и коммутатор и применять различную IP-адресацию (IP-адреса из разных подсетей) для компьютеров в классе информатики и всех остальных компьютеров. Но опять-таки это требует дополнительных затрат на приобретение соответствующего оборудования и опыта по настройке маршрутизаторов. К сожалению, решить проблему разделения школьных компьютеров на изолированные друг от друга группы без дополнительных финансовых затрат нельзя (наличие управляемого коммутатора в школе. исключение из правил). В то же время подобное разделение и не является обязательным. Если рассматривать необходимость такого разделения с точки зрения сетевой безопасности, то проблему безопасности компьютеров учителей и администрации от посягательств со стороны учеников можно решить и другим способом.




Компьютерные сети Локальные (Local Aria Network, LAN; Ethernet) ~ 100м Корпоративные (Local Aria Network, LAN; Ethernet) + оборудование ~ неск.сотен метров Региональные (WAN – Wide Area Network (широкий, обширный))MAN – Metropolitan Area Network (Domolink, Carbina, EUnet/Relcom, Demos/Internet, Sovam Teleport, Global One Russia, GlasNet, Роснет, RUNNet, и др.) Глобальные (World Wide Web) – Интернет (но не совсем WWW!), FIDO




Для чего сети? Для совместного использования сетевых ресурсов. Сетевые ресурсы Информационные (сайты, документы, файлы, …) Аппаратные (сетевые модемы, сканеры, принтеры, жёсткие диски, сетевые хранилища информации, ….) Деление компьютеров: сервер и клиент


За одним компьютером закрепляется роль поставщика ресурсов (программ, данных и т.д.), а за другим роль пользователя этих ресурсов. В этом случае первый компьютер называется сервером, а второй клиентом или рабочей станцией. Работать можно только на компьютере-клиенте под управлением специального программного обеспечения. Сервер (англ. serve обслуживать) это высокопроизводительный компьютер с большим объёмом внешней памяти, который обеспечивает обслуживание других компьютеров путем управления распределением дорогостоящих ресурсов совместного пользования (программ, данных и периферийного оборудования). Клиент (иначе, рабочая станция, АРМ, Workstation) любой компьютер, имеющий доступ к услугам сервера. Существует два основных типа сетей: одноранговые и сети на основе сервера.


В одноранговой сети все компьютеры равноправны: нет иерархии среди компьютеров и нет выделенного (англ. dedicated) сервера. Как правило, каждый компьютер функционирует и как клиент, и как сервер; иначе говоря, нет отдельного компьютера, ответственного за администрирование всей сети. Все пользователи самостоятельно решают, какие данные на своем компьютере сделать общедоступным по сети. Выделенным называется такой сервер, который функционирует только как сервер (исключая функции клиента или рабочей станции). Они специально оптимизированы для быстрой обработки запросов от сетевых клиентов и для управления защитой файлов и каталогов. Сети на основе сервера стали промышленным стандартом. Существуют и комбинированные типы сетей, совмещающие лучшие качества одноранговых сетей и сетей на основе сервера. Все программное обеспечение сети также можно поделить на клиентское и серверное.








Switch Каб.24 (11 ПК) switch Каб.25 (11 ПК) Teacher25 Teacher24 3 этаж 2 этаж Библиотека ПК1 ПК2 switch Каб.28 (Физика) (1ПК) Каб.31Каб.32Завуч Каб.33Каб.34Каб.35Каб.36Каб.37 switch Каб.39Каб.38 Каб.14Каб.13 Каб.15 Каб.17 Секретарь Директор 1 этаж ИНТЕРНЕТ

, ). Сейчас еще расскажу.

После описанных мной ранее историй в школу было поставлено еще много разного оборудования, в том числе аж три компьютерных класса. Тут уже Контора подошла к делу серьезнее - в школу был проведен отдельный выделенный канал (оптика), в школе была смонтирована локальная сеть и оборудована серверная. Кстати, теперь я знаю название Конторы - это тверская компания "Андреев Софт ".

На фотографии выше изображена эта самая серверная. Что мы тут видим:

  • Два сервера - на одном крутится серверная часть программы "1С:Образование ", назначение другого мне неизвестно
  • Цисковский Каталист - выполняет роль центрального узла сети
  • Два цисковских контроллера для Wi-Fi антенн
  • Белая коробка неизвестного назначения, в которую входит сетевой кабель
  • Неработающий VoIP-телефон
  • Длинковский KVM
  • Оптический модем (не помню какой фирмы, кажется цисковский)
  • Мышь, клава, монитор, упсы.
  • На стене сзади частично видна проводка в гофротрубе
А ниже, под 19-дюймовым серверным шкафом столом аккуратно смонтированы валяются цисковские усилители Wi-Fi-антенн:

Антены развешаны по разным концам школы. Компьютеры подключаются к локалке посредством Wi-Fi-карточек.

Вообще говоря, техническое оснащение сельских школ иногда удивляет. В этой школе, помимо самих компьютеров, есть несколько интерактивных мультимедийных досок, несколько проекторов, минимум один здоровенный ЖК-телевизор, некоторым учителям выданы ноутбуки. Школа в Питере, где учатся мои дети, оснащена гораздо проще.

Но возникла у них там одна проблема. Школа эта состоит из двух зданий, разделенных школьным двором. Основное здание кирпичное, там учатся средние и старшие классы, а второе здание деревянное, там учатся начальные классы. Локальная сеть сделана в кирпичном здании, а до деревянного здания WI-Fi не дотягивается. Толстые кирпичные стены, неудачное расположение антенн - в общем, в деревянном здании сети нет.

Скорее всего, это не техническая ошибка при монтаже, а просто никто не думал о том, что начальным классам вдруг понадобится сеть.

Тем не менее, в начальных классах нашелся продвинутый учитель, который по своей инициативе разобрался с компьютером, проектором и интерактивной доской и пожелал давать детям уроки с использованием современных технологий. Но без локальной сети сделать это невозможно.

Попытки учителя добиться от руководства протяжки сети до деревянного здания успеха не принесли. В самой школе нет соответствующих специалистов, имеющийся в городе специалист (работающий на местной телефонной станции) затребовал какие-то деньги, которые руководство школы, видимо, не захотело платить, а обращаться в компанию Андреев Софт, которая изначально монтировала сеть, руководство школы по непонятным мне причинам отказалось.

Поэтому протяжкой сети занялся я. Как-раз удачно выпало несколько выходных на 8-е марта. Заодно свозил городских друзей в деревню, показал живую корову:)

За неделю до моего приезда учитель начал договориваться с руководством школы о том, что сеть будет протянута собственными силами, нужно только формальное разрешение. Был скандал, ругань, истерика завхоза и недовольство директора. Звучали отмазки типа "нельзя по каким-то там нормам!", "школу оштрафуют за самодеятельность!", "вы испортите стены!" и, конечно, стандартное "не положено!".

В общем, через пень-колоду разрешение было выбито.

За пару дней до моего приезда два мужика - папы детей, которые учатся в классе инициативного учителя - пришли в школу и без лишних слов (и без денег) проложили по моей инструкции кабель. Между зданиями натянули тросик, привязали кабель к нему.

От серверной в кирпичной школе до класса в деревянной школе получалось примерно 150 метров, так что пришлось делать разрыв и ставить в промежутке дополнительный свич для усиления сигнала. В классе так же поставили свич, чтобы можно было подключить несколько компов - не для одного же компа сеть тянуть.

8 марта я приехал сам. Прозвонил кабель, развел розетки, обжал патч-корды. Оставалось только включиться в Каталист и сеть готова.

Но тут, должен признаться, меня постигла неудача. Каталист отказался дружить с моей подсеткой и выдавать адреса подключенным компам. Т.е. видно, что линк есть, но DHCP ничего не выдает. А вручную прописать IP, маску и шлюз я не смог - поди догадайся, что там писать. Посмотреть пример на каком-нибудь другом, уже подключенном компе, не вышло - они все подключены по Wi-Fi и не напрямую к Каталисту, а через контроллеры. Короче говоря, я не разобрался как там что настроено.

Простым решением было бы позвонить в техподдержку Андреев Софт и спросить, что нужно прописать. Но простое решение не сработало, так как было 8-е марта и в техподдержке никто не отвечал.

Пришлось мне уехать, оставив инструкцию по дальнейшим действиям. 11 марта по моей инструкции из школы позвонили в техподдержку, узнали нужные настройки и прописали на подключенном компе. И все заработало.

Теперь в начальной школе есть сеть и учитель может использовать на уроках все имеющиеся технические новинки.

Стоимость проекта:

  • 330*2 = 660 рублей за тплинковские свичи
  • 10*10 = 100 рублей за штекеры rj-45
  • 100*5 = 500 рублей за розетки rj-45
  • примерно 2000 рублей за кабель пятой категории
Итого примерно 3260 рублей. Кабель был куплен на месте, свичи штекеры и розетки я привез из Питера. Клещи для обжимки штекеров и тыркалку для разводки розеток я тоже привез из Питера, в школе таких штук нет, а на телефонной станции не дают, жадничают.

Осталось назвать спонсора мероприятия, но я не знаю его имя, реклама его не интересовала. Это был еще один мужик, родитель одного из учеников, владелец маленького местного заводика по производству мебели. Спасибо ему и остальным.

0

Курсовая работа

Проектирование ЛВС в общеобразовательной средней школе

Введение 3

  1. Создание ЛВС в школе 4
  2. Конструкторская часть 8

2.1 Выбор и обоснование технологии построения ЛВС 8

2.2 Анализ среды передачи данных 8

2.3 Топология сети 8

2.4 Метод доступа 9

  1. Выбор и обоснование аппаратного обеспечения сети 10

3.1 Коммуникационные устройства 10

3.2 Сетевое оборудование 13

3.3 Планировка помещений 16

3.4 Расчет количества кабеля 19

  1. Инструкция по монтажу сети 22
  2. Расчет стоимости оборудования 30

Заключение 31

Список литературы 33

Введение

Локальная вычислительная сеть - это совместное подключение нескольких компьютеров к общему каналу передачи данных, благодаря которому обеспечивается совместное использование ресурсов, таких, как базы данных, оборудование, программы. С помощью локальной сети удаленные рабочие станции объединяются в единую систему, имеющую следующие преимущества:

  1. Разделение ресурсов - позволяет совместно использовать ресурсы, например, периферийные устройства (принтеры, сканеры), всеми станциями, входящими в сеть.
  2. Разделение данных - позволяет совместно использовать информацию, находящуюся на жестких дисках рабочих станций и сервера.
  3. Разделение программных средств - обеспечивает совместное использование программ, установленных на рабочих станциях и сервере.
  4. Разделение ресурсов процессора - возможность использования вычислительных мощностей для обработки данных другими системами, входящими в сеть.

Разработка локальной вычислительной сети будет вестись в здании общеобразовательной школы.

Цель данной работы- расчет технических характеристик разрабатываемой сети, определение аппаратных и программных средств, расположение узлов сети, каналов связи, расчет стоимости внедрения сети.

  1. Создание ЛВС в школе

За последние годы произошло коренное изменение роли и места персональных компьютеров и информационных технологий в жизни общества. Современный период развития общества определяется как этап информатизации. Информатизация общества предполагает всестороннее и массовое внедрение методов и средств сбора, анализа, обработки, передачи, архивного хранения больших объемов информации на базе компьютерной техники, а также разнообразных устройств передачи данных, включая телекоммуникационные сети.

Концепция модернизации образования, проект “Информатизация системы образования” и, наконец, технический прогресс ставят перед образованием задачу формирования ИКТ - компетентной личности, способной применять знания и умения в практической жизни для успешной социализации в современном мире.

Процесс информатизации школы предполагает решение следующих задач:

  • развитие педагогических технологий применения средств информатизации и коммуникации на всех ступенях образования;
  • использование сети Интернет в образовательных целях;
  • создание и применение средств автоматизации психолого-педагогических тестирующих, диагностирующих методик контроля и оценки уровня знаний обучаемых, их продвижения в учении, установления уровня интеллектуального потенциала обучающегося;
  • автоматизация деятельности административного аппарата школы;
  • подготовка кадров в области коммуникативно-информационных технологий.

Локальная сеть объединяет компьютеры, установленные в одном помещении (например, школьный компьютерный класс, состоящий из 8—12 компьютеров) или в одном здании (например, в здании школы могут быть объединены в локальную сеть несколько десятков компьютеров, установленных в различных предметных кабинетах).

Локальная вычислительная сеть, ЛВС (англ. Local Area Network, LAN) компьютерная сеть, покрывающая относительно небольшую территорию.

В небольших локальных сетях все компьютеры обычно равноправны, т. е. пользователи самостоятельно решают, какие ресурсы своего компьютера (диски, каталоги, файлы) сделать общедоступными по сети. Такие сети называются одноранговыми.

Для увеличения производительности локальной сети, а также в целях обеспечения большей надежности при хранении информации в сети некоторые компьютеры специально выделяются для хранения файлов или программ-приложений. Такие компьютеры называются серверами, а локальная сеть — сетью на основе серверов.

Типичная школьная локальная сеть выглядит следующим образом. Имеется одна точка выхода в Интернет, к которой подключается соответствующий маршрутизатор (ADSL или Ethernet). Маршрутизатор связан с коммутатором (свичем), к которому уже подключаются пользовательские ПК. На маршрутизаторе практически всегда активирован DHCP-сервер, что подразумевает автоматическую раздачу IP-адресов всем пользовательским ПК. Собственно, в таком решении есть как свои плюсы, так и минусы. С одной стороны, наличие DHCP-сервера упрощает процесс создания сети, поскольку нет необходимости вручную производить сетевые настройки на компьютерах пользователей. С другой стороны, в условиях отсутствия системного администратора вполне типична ситуация, когда никто не знает пароля доступа к маршрутизатору, а стандартный пароль изменен. Казалось бы, зачем вообще нужно «лезть» в маршрутизатор, если и так все работает? Так-то оно так, но бывают неприятные исключения. К примеру, количество компьютеров в школе увеличилось (оборудовали еще один класс информатики) и начались проблемы с конфликтами IP-адресов в сети. Дело в том, что неизвестно, какой диапазон IP-адресов зарезервирован на маршрутизаторе под раздачу DHCP-сервером, и вполне может оказаться, что этих самых IP-адресов просто недостаточно. Если такая проблема возникает, то единственный способ решить ее, не залезая при этом в настройки самого маршрутизатора, — это вручную прописать все сетевые настройки (IP-адрес, маску подсети и IP-адрес шлюза) на каждом ПК. Причем, дабы избежать конфликта IP-адресов, сделать это нужно именно на каждом ПК. В противном случае назначенные вручную IP-адреса могут оказаться из зарезервированного для раздачи DHCP-сервером диапазона, что со временем приведет к конфликту IP-адресов.

Другая проблема заключается в том, что все компьютеры, подключенные к коммутатору и соответственно имеющие выход в Интернет через маршрутизатор, образуют одну одноранговую локальную сеть, или просто рабочую группу. В эту рабочую группу входят не только компьютеры, установленные в школьном компьютерном классе, но и все остальные компьютеры, имеющиеся в школе. Это и компьютер директора, и компьютер завуча, и компьютеры секретарей, и компьютеры бухгалтерии (если таковая имеется в школе), и все остальные компьютеры с выходом в Интернет. Конечно, было бы разумно разбить все эти компьютеры на группы и назначить каждой группе пользователей соответствующие права. Но, как мы уже отмечали, никакого контроллера домена не предусмотрено, а потому реализовать подобное просто не удастся. Конечно, эту проблему можно было бы частично решить на аппаратном уровне, организовав несколько виртуальных локальных сетей (VLAN) и тем самым физически отделив ученические ПК от остальных компьютеров. Однако для этого нужен управляемый коммутатор (или хотя бы Smart-коммутатор), наличие которого в школе — большая редкость. Но даже если такой коммутатор и имеется, то нужно еще уметь настраивать виртуальные сети. Можно даже не использовать виртуальные сети, а установить дополнительный маршрутизатор и коммутатор и применять различную IP-адресацию (IP-адреса из разных подсетей) для компьютеров в классе информатики и всех остальных компьютеров. Но опять-таки это требует дополнительных затрат на приобретение соответствующего оборудования и опыта по настройке маршрутизаторов. К сожалению, решить проблему разделения школьных компьютеров на изолированные друг от друга группы без дополнительных финансовых затрат нельзя (наличие управляемого коммутатора в школе. исключение из правил). В то же время подобное разделение и не является обязательным. Если рассматривать необходимость такого разделения с точки зрения сетевой безопасности, то проблему безопасности компьютеров учителей и администрации от посягательств со стороны учеников можно решить и другим способом.

  1. Конструкторская часть

2.1 Выбор и обоснование технологии построения ЛВС.

Основным назначением проектируемой вычислительной сети является обеспечение коммуникации между компьютерами сети и предоставление воз-можности передачи файлов на скорости до 100 Мбит/с. Таким образом, для построения ЛВС для всех отделов здания будет использоваться технология Fast Ethernet.

Технологии построения ЛВС. В данной работе для построения сети будет использоваться технология Fast Ethernet, обеспечивающая скорость передачи данных 100 Мбит/с. Также будет применена топология «звез-да» с использованием в качестве линий связи неэкранированной витой пары ка-тегории CAT5.

2.2 Анализ среды передачи данных.

Для передачи данных в Fast Ethernet будет применяться стандарт 100 Base-TX. Используется 4-парный ка-бель категории CAT5. В передаче данных участвуют все пары. Параметры:

 скорость передачи данных: 100 Мбит/с;

 тип используемого кабеля: неэкранированная витая пара категории CAT5;

 максимальная длина сегмента: 100 м.

2.3 Топология сети.

Топология сети определяется размещением узлов в сети и связей между ними. Термин «топология сети» относится к пути, по кото-рому данные перемещаются в сети. Для технологии Fast Ethernet будет использоваться топология «звезда».

Для построения сети со звездообразной архитектурой в центре сети необходимо разместить концентратор (коммутатор). Его основная функция -обеспечение связи между компьютерами, входящими в сеть. То есть все компьютеры, включая файл-сервер, не связываются непосредственно друг с другом, а присоединяются к концентратору. Такая структура надежнее, поскольку в случае выхода из строя одной из рабочих станций все остальные сохраняют работоспособность. Топология в виде звезды является наиболее быстродействующей из всех топологий вычислительных сетей, поскольку передача данных между рабочими станциями проходит через центральный узел (при его хорошей производительности) по отдельным линиям, используемым только этими рабочими станциями. Частота запросов передачи информации от одной станции к другой, невысокая по сравнению с достигаемой в других топологиях.

2.4 Метод доступа.

В сетях Fast Ethernet используется метод доступа CSMA/CD. Основная концепция этого метода заключается в следующем:

Все станции прослушивают передачи по каналу, определяя состояние канала;

Проверка несущей;

Начало передачи возможно лишь после обнаружения свободного состо-яния канала;

Станция контролирует свою передачу, при обнаружении столкновения (коллизии) передача прекращается и станция генерирует сигнал столкновения;

Передача возобновляется через случайный промежуток времени, дли-тельность которого определяется по специальному алгоритму, если канал в этот момент окажется свободным;

Несколько неудачных попыток передачи интерпретируются станцией как отказ сети.

Даже в случае CSMA/CD может возникнуть ситуация коллизии, когда две или больше станций одновременно определяют свободный канал и начинают по-пытку передачи данных.

  1. Выбор и обоснование аппаратного обеспечения сети

3.1 Коммуникационные устройства

Выбор сетевого адаптера.

Сетевой адаптер - это периферийное устройство компьютера,
непосредственно взаимодействующее со средой передачи данных, которая
прямо или через другое коммуникационное оборудование связывает его с
другими компьютерами. Это устройство решает задачи надежного обмена
двоичными данными, представленными соответствующими электромагнитными сигналами, по внешним линиям связи. Сетевой адаптер подключается посредством шины PCI на материнскую плату.

Сетевой адаптер обычно выполняет следующие функции:

  • оформление передаваемой информации в виде кадра определенного формата.
  • получение доступа к среде передачи данных.
  • кодирование последовательности бит кадра последовательностью электрических сигналов при передаче данных и декодирование при их приеме.
  • преобразование информации из параллельной формы в последовательную и обратно.
  • синхронизация битов, байтов и кадров.

В качестве сетевых адаптеров выбираются сетевые платы TrendNet ТЕ 100-PCIWN.

Выбор концентратора (коммутатора).

Концентратор (повторитель), является центральной частью компьютерной сети в случае реализации топологии «звезда».

Основная функция концентратора - повторение сигналов, поступающих на его порт. Повторитель улучшает электрические характеристики сигналов и их синхронность, и за счет этого появляется возможность увеличивать общую длину кабеля между самыми удаленными в сети узлами.

Многопортовый повторитель часто называют концентратором или хабом, что отражает тот факт, что данное устройство реализует не только функцию повторения сигналов, но и концентрирует в одном центральном устройстве функции объединения компьютеров в сеть.

Отрезки кабеля, соединяющие два компьютера или какие либо два других сетевых устройства, называются физическими сегментам, поэтому концентраторы и повторители, которые используются для добавления новых физических сегментов, являются средством физической структуризации сети.

Концентратор - устройство, у которого суммарная пропускная способность входных каналов выше пропускной способности выходного канала. Так как потоки входных данных в концентраторе больше выходного потока, то главной его задачей является концентрация данных.

Концентратор является активным оборудованием. Концентратор служит центром (шиной) звездообразной конфигурации сети и обеспечивает подключение сетевых устройств. В концентраторе для каждого узла (ПК, принтеры, серверы доступа, телефоны и пр.) должен быть предусмотрен отдельный порт.

Коммутаторы.

Коммутаторы контролируют сетевой трафик и управляют его движением, анализируя адреса назначения каждого пакета. Коммутатор знает, какие устройства соединены с его портами, и направляет пакеты только на необходимые порты. Это дает возможность одновременно работать с несколькими портами, расширяя тем самым полосу пропускания.

Таким образом, коммутация уменьшает количество лишнего трафика, что происходит в тех случаях, когда одна и та же информация передается всем портам,

Коммутаторы и концентраторы часто используются в одной и той же сети; концентраторы расширяют сеть, увеличивая число портов, а коммутаторы разбивают сеть на небольшие, менее перегруженные сегменты. Однако применение коммутатора оправдано лишь в крупных сетях, т. к, его стоимость на порядок выше стоимости концентратора.

Коммутатор следует использовать в случае построения сетей, число рабочих станций в которой составляет более 50, к которому можно отнести и наш случай, вследствие чего выбираем коммутаторы D-Link DES-1024D/E, 24-port Switch 10/100Mbps.

3.2 Сетевое оборудование

Выбор типа кабеля.

Сегодня подавляющее большинство компьютерных сетей в качестве среды передачи использует провода или кабели. Существуют различные типы кабелей, которые удовлетворяют потребностям всевозможных сете от больших до малых.

В большинстве сетей применяется только три основные группы кабелей:

  • коаксиальный кабель (coaxial cable);
  • витая пара (twisted pair):

* неэкранированная (unshielded); о * экранированная (shielded);

Оптоволоконный кабель, одномодовый, многомодовый (fiber
optic).

На сегодня самый распространенный тип кабеля и наиболее подходящий по своим характеристикам - это витая пара. Остановимся на ней более подробно.

Витой парой называется кабель, в котором изолированная пара проводников скручена с небольшим числом витков на единицу длины. Скручивание проводов уменьшает электрические помехи извне при распространении сигналов по кабелю, а экранированные витые пары еще более увеличивают степень помехозащищенности сигналов.

Кабель типа «витая пара» используется во многих сетевых технологиях, включая Ethernet, ARCNet и IBM Token Ring.

Кабели на витой паре подразделяются на: неэкранированные (UTP -Unshielded Twisted Pair) и экранированные медные кабели. Последние подразделяются на две разновидности: с экранированием каждой пары и общим экраном (STP - Shielded Twisted Pair) и с одним только общим экраном (FTP - Foiled Twisted Pair). Наличие или отсутствие экрана у кабеля вовсе не означает наличия или отсутствия защиты передаваемых данных, а говорит лишь о различных подходах к подавлению помех. Отсутствие экрана делает неэкранированные кабели более гибкими и устойчивыми к изломам. Кроме того, они не требуют дорогостоящего контура заземления для эксплуатации в нормальном режиме, как экранированные. Неэкранированные кабели идеально подходят для прокладки в помещениях внутри офисов, а экранированные лучше использовать для установки в местах с особыми условиями эксплуатации, например, рядом с очень сильными источниками электромагнитных излучений, которых в офисах обычно нет.

Вследствие того, что выбрана технология Fast Ethernet 100Base-T, и звездообразная топология предлагается выбрать кабель категории 5 неэкранированная витая пара (UTP).

Выбор разъемов.

Для соединения рабочих станций и коммутатора выбираются разъемы RJ-45, 8-контактные розетки, кабель которых обжимается специальным образом.

Когда компьютер используется для обмена информацией по телефонной
сети, необходимо устройство, которое может принять сигнал из телефонной
сети и преобразовать его в цифровую информацию. Это устройство
называется модем (модулятор-демодулятор). Назначение модема заключается в замене сигнала, поступающего из компьютера (сочетание нулей и единиц), электрическим сигналом с частотой, соответствующей рабочему диапазону телефонной линии.

Модемы бывают внутренние и внешние. Внутренние модемы выполнены в виде платы расширения, вставляемый в специальный слот расширения на материнской плате компьютера. Внешний модем, в отличие от внутреннего, выполнен в виде отдельного устройства, т.е. в отдельном корпусе и со своим блоком питания, когда внутренний модем получает электричество от блока питания компьютера.

Внутренний модем Достоинства

  1. Все внутренние модели без исключения (в отличие от внешних) имеют встроенное FIFO. (First Input First Output - первым пришел, первым принят). FIFO - это микросхема, обеспечивающая буферизацию данных. Обычный модем при прохождении байта данных через порт каждый раз запрашивает прерывания у компьютера. Компьютер по специальным IRQ-линиям прерывает на некоторое время работу модема, а потом опять возобновляет её. Это замедляет работу компьютера в целом. FIFO же позволяет использовать прерывания в несколько раз реже. Это имеет большое значение при работе в многозадачных средах. Таких как Windows95, OS/2, Windows NT, UNIX и других.
  2. При использовании внутреннего модема уменьшается количество проводов, натянутых в самых неожиданных местах. Так же внутренний модем не занимает на рабочем столе.
  3. Внутренние модемы являются последовательным портом компьютера и не занимают существующих портов компьютера.
  4. Внутренние модели модемов всегда дешевле внешних.
    Недостатки
  5. Занимают слот расширения на материнской плате компьютера. Это очень неудобно на мультимедийных машинах, на которых установлено большое количество дополнительных плат, а также на компьютерах, которые работают серверами в сетях.
  6. Нет индикаторных лампочек, которые при имении определённого навыка позволяют следить за процессами, происходящими в модеме.
  7. Если модем завис, то восстановить работоспособность можно восстановить только клавишей перезагрузки компьютера "RESET".

Внешние модемы Достоинства

  1. Они не занимают слот расширения, и при необходимости их можно легко отключить и перенести на другой компьютер.
  2. На передней панели есть индикаторы, которые помогают понять, какую операцию сейчас производит модем.
  3. При зависании модема не нужно перезагружать компьютер, достаточно выключить и включить питание модема.

Недостатки

  1. Необходима мультикарта со встроенным FIFO. Без FIFO модем конечно будет работать, но при этом будет падать скорость передачи данных.
  2. Внешний модем занимает на рабочем столе и ему требуются дополнительные провода для подключения. Это тоже создает некоторое неудобство.
  3. Он занимает последовательный порт компьютера.
  4. Внешний модем всегда дороже аналогичного внутреннего, т.к. включает корпус с индикаторными лампочками и блок питания.

Для нашей сети выберем внутренний модем ZyXEL Omni 56K. V.90 (PCTel) int PCI.

3.3 Планировка помещений

На всех схемах присутствуют условные обозначения:

СВ - сервер.

РС - рабочая станция.

К - коммутатор.

Рис. 1 Схема сети на первом этаже

Рис. 2 Схема сети на втором этаже

Рис. 3 Схема сети на 3 этаже

3.4 Расчет количества кабеля

Расчет общей длины кабеля по этажам, необходимого для построения локальной сети, приведен в таблицах 1,2,3. Кабель прокладывается вдоль стен в специальных коробках.

Таблица 1. Длина кабеля на 1 этаже.

К1-К2 16 метров

К1-К3 14 метров

Общая длина кабеля на первом этаже составляет 96 метров.

Таблица 2. Длина кабеля на 2 этаже

Рабочая станция

Длина кабеля

От РС до К

Длинна кабеля между коммутаторами:

К4К5 17 метров

Длинна кабеля от сервера до К 4 - 1 метр

Общая длина кабеля на втором этаже составляет 156 метра.

Таблица 3. Длина кабеля на 3 этаже

Рабочая станция

Длина кабеля от РС до К

Длинна кабеля между коммутаторами:

К7К6 17 метров

К7К8 15 метров

Общая длина кабеля в сегменте С составляет 230 метра.

Длинна кабеля между этажами по 2 метра

Суммарная длина кабеля всей локальной сети с учетом коэффициента запаса составляет (96+156+230+2+2)* 1,2=583, 2 м.

  1. Инструкция по монтажу сети

В начале развития локальных сетей коаксиальный кабель как среда передачи был наиболее распространен. Он использовался и используется преимущественно в сетях Ethernet и отчасти ARCnet. Различают "толстый" и "тонкий" кабели.

"Толстый Ethernet", как правило, используется следующим образом. Он прокладывается по периметру помещения или здания, и на его концах устанавливаются 50-омные терминаторы. Из-за своей толщины и жесткости кабель не может подключаться непосредственно к сетевой плате. Поэтому на кабель в нужных местах устанавливаются "вампиры" - специальные устройства, прокалывающие оболочку кабеля и подсоединяющиеся к его оплетке и центральной жиле. "Вампир" настолько прочно сидит на кабеле, что после установки его невозможно снять без специального инструмента. К "вампиру", в свою очередь, подключается трансивер - устройство, согласовывающее сетевую плату и кабель. И, наконец, к трансиверу подключается гибкий кабель с 15-контактными разъемами на обоих концах - вторым концом он подсоединяется к разъему AUI (attachment unit interface) на сетевой плате.

Все эти сложности были оправданы только одним - допустимая максимальная длина "толстого" коаксиального кабеля составляет 500 метров. Соответственно одним таким кабелем можно обслужить гораздо большую площадь, чем "тонким" кабелем, максимально допустимая длина которого составляет, как известно, 185 метров. При наличии некоторого воображения можно представить себе, что "толстый" коаксиальный кабель - это распределенный в пространстве Ethernet-концентратор, только полностью пассивный и не требующий питания. Других преимуществ у него нет, недостатков же хоть отбавляй - прежде всего высокая стоимость самого кабеля (порядка 2,5 долл. за метр), необходимость использования специальных устройств для монтажа (25-30 долл. за штуку), неудобство прокладки и т.п. Это постепенно привело к тому, что "толстый Ethernet" медленно, но верно сошел со сцены, и в настоящее время мало где применяется.

"Тонкий Ethernet" распространен значительно шире, чем его "толстый" собрат. Принцип использования у него тот же, но благодаря гибкости кабеля он может присоединяться непосредственно к сетевой плате. Для подключения кабеля используются разъемы BNC (bayonet nut connector), устанавливаемые собственно на кабель, и T-коннекторы, служащие для отвода сигнала от кабеля в сетевую плату. Разъемы типа BNC бывают обжимные и разборные (пример разборного разъема - отечественный разъем СР-50-74Ф).

Т-коннектор

Для монтажа разъема на кабель вам потребуется либо специальный инструмент для обжимки, либо паяльник и плоскогубцы.

Кабель необходимо подготовить следующим образом:

  1. Аккуратно отрежьте так, чтобы его торец был ровным. Наденьте на кабель металлическую муфту (отрезок трубки), который поставляется в комплекте с BNC-разъемом.
  2. Снимите с кабеля внешнюю пластиковую оболочку на длину примерно 20 мм. Будьте аккуратны, чтобы не повредить по возможности ни один проводник оплетки.
  3. Оплетку аккуратно расплетите и разведите в стороны. Снимите изоляцию с центрального проводника на длину примерно 5 мм.
  4. Установите центральный проводник в штырек, который также поставляется в комплекте с разъемом BNC. Используя специальный инструмент, надежно обожмите штырек, фиксируя в нем проводник, либо впаяйте проводник в штырек. При пайке будьте особенно аккуратны и внимательны - плохая пайка через некоторое время станет причиной отказов в работе сети, причем локализовать это место будет достаточно трудно.
  5. Вставьте центральный проводник с установленным на него штырьком в тело разъема до щелчка. Щелчок означает, что штырек сел на свое место в разъеме и зафиксировался там.
  6. Равномерно распределите проводники оплетки по поверхности разъема, если необходимо, обрежьте их до нужной длины. Надвиньте на разъем металлическую муфту.
  7. Специальным инструментом (или плоскогубцами) аккуратно обожмите муфту до обеспечения надежного контакта оплетки с разъемом. Не обжимайте слишком сильно - можно повредить разъем или пережать изоляцию центрального проводника. Последнее может привести к неустойчивой работе всей сети. Но и обжимать слишком слабо тоже нельзя - плохой контакт оплетки кабеля с разъемом также приведет к отказам в работе.

Отмечу, что отечественный разъем СР-50 монтируется примерно так же, за исключением того, что оплетка в нем заделывается в специальную разрезную втулку и закрепляется гайкой. В некоторых случаях это может оказаться даже удобнее.

Кабели на основе витой пары

Витая пара (UTP/STP, unshielded/shielded twisted pair) в настоящее время является наиболее распространенной средой передачи сигналов в локальных сетях. Кабели UTP/STP используются в сетях Ethernet, Token Ring и ARCnet. Они различаются по категориям (в зависимости от полосы пропускания) и типу проводников (гибкие или одножильные). В кабеле 5-й категории, как правило, находится восемь проводников, перевитых попарно (то есть четыре пары).

Кабель UTP

Структурированная кабельная система, построенная на основе витой пары 5-й категории, имеет очень большую гибкость в использовании. Ее идея заключается в следующем.

На каждое рабочее место устанавливается не менее двух (рекомендуется три) четырехпарных розеток RJ-45. Каждая из них отдельным кабелем 5-й категории соединяется с кроссом или патч-панелью, установленной в специальном помещении, - серверной. В это помещение заводятся кабели со всех рабочих мест, а также городские телефонные вводы, выделенные линии для подключения к глобальным сетям и т.п. В помещении, естественно, монтируются серверы, а также офисная АТС, системы сигнализации и прочее коммуникационное оборудование.

Благодаря тому что кабели со всех рабочих мест сведены на общую панель, любую розетку можно использовать как для подключения рабочего места к ЛВС, так и для телефонии или вообще чего угодно. Допустим, две розетки на рабочем месте были подключены к компьютеру и принтеру, а третья - к телефонной станции. В процессе работы появилась необходимость убрать принтер с рабочего места и установить вместо него второй телефон. Нет ничего проще - патч-корд соответствующей розетки отключается от концентратора и переключается на телефонный кросс, что займет у администратора сети никак не больше нескольких минут.

Розетка на 2 порта

Патч-панель, или панель соединений, представляет собой группу розеток RJ-45, смонтированных на пластине шириной 19 дюймов. Это стандартный размер для универсальных коммуникационных шкафов - рэков (rack), в которых устанавливается оборудование (концентраторы, серверы, источники бесперебойного питания и т.п.). На обратной стороне панели смонтированы соединители, в которые монтируются кабели.

Кросс в отличие от патч-панели розеток не имеет. Вместо них он несет на себе специальные соединительные модули. В данном случае его преимущество перед патч-панелью в том, что при его использовании в телефонии вводы можно соединять между собой не специальными патч-кордами, а обычными проводами. Кроме того, кросс можно монтировать прямо на стену - наличия коммуникационного шкафа он не требует. В самом деле, нет смысла приобретать дорогостоящий коммуникационный шкаф, если вся ваша сеть состоит из одного-двух десятков компьютеров и сервера.

Кабели с многожильными гибкими проводниками используются в качестве патч-кордов, то есть соединительных кабелей между розеткой и сетевой платой, либо между розетками на панели соединений или кроссе. Кабели с одножильными проводниками - для прокладки собственно кабельной системы. Монтаж разъемов и розеток на эти кабели совершенно идентичен, но обычно кабели с одножильными проводниками монтируются на розетки рабочих мест пользователей, панели соединений и кроссы, а разъемы устанавливают на гибкие соединительные кабели.

Патч-панель

Как правило, применяются следующие виды разъемов:

  • S110 - общее название разъемов для подключения кабеля к универсальному кроссу "110" или коммутации между вводами на кроссе;
  • RJ-11 и RJ-12 - разъемы с шестью контактами. Первые обычно применяются в телефонии общего назначения - вы можете встретить такой разъем на шнурах импортных телефонных аппаратов. Второй обычно используется в телефонных аппаратах, предназначенных для работы с офисными мини-АТС, а также для подключения кабеля к сетевым платам ARCnet;
  • RJ-45 - восьмиконтактный разъем, использующийся обычно для подключения кабеля к сетевым платам Ethernet либо для коммутации на панели соединений.

Разъем RJ-45

В зависимости от того, что с чем нужно коммутировать, применяются различные патч-корды: "45-45" (с каждой стороны по разъему RJ-45), "110-45" (с одной стороны S110, с другой - RJ-45) или "110-110".

Для монтажа разъемов RJ-11, RJ-12 и RJ-45 используются специальные обжимочные приспособления, различающиеся между собой количеством ножей (6 или 8) и размерами гнезда для фиксации разъема. В качестве примера рассмотрим монтаж кабеля 5-й категории на разъем RJ-45.

  1. Аккуратно обрежьте конец кабеля. Торец кабеля должен быть ровным.
  2. Используя специальный инструмент, снимите с кабеля внешнюю изоляцию на длину примерно 30 мм и обрежьте нить, вмонтированную в кабель (нить предназначена для удобства снятия изоляции с кабеля на большую длину). Любые повреждения (надрезы) изоляции проводников абсолютно недопустимы - именно поэтому желательно использовать специальный инструмент, лезвие резака которого выступает ровно на толщину внешней изоляции.
  3. Аккуратно разведите, расплетите и выровняйте проводники. Выровняйте их в один ряд, при этом соблюдая цветовую маркировку. Существует два наиболее распространенных стандарта по разводке цветов по парам: T568A (рекомендуемый компанией Siemon) и T568B (рекомендуемый компанией ATT и фактически наиболее часто применяемый).

На разъеме RJ-45 цвета проводников располагаются так:

Проводники должны располагаться строго в один ряд, без нахлестов друг на друга. Удерживая их одной рукой, другой ровно обрежьте проводники так, чтобы они выступали над внешней обмоткой на 8-10 мм.

  1. Держа разъем защелкой вниз, вставьте в него кабель. Каждый проводник должен попасть на свое место в разъеме и упереться в ограничитель. Прежде чем обжимать разъем, убедитесь, что вы не ошиблись в разводке проводников. При неправильной разводке помимо отсутствия соответствия номерам контактов на концах кабеля, легко выявляемого с помощью простейшего тестера, возможна более неприятная вещь - появление "разбитых пар" (splitted pairs).

Для выявления этого брака обычного тестера недостаточно, так как электрический контакт между соответствующими контактами на концах кабеля обеспечивается и с виду все как будто бы нормально. Но такой кабель никогда не сможет обеспечить нормальное качество соединения даже в 10-мегабитной сети на расстояние более 40-50 метров. Поэтому нужно быть внимательным и не торопиться, особенно если у вас нет достаточного опыта.

  1. Вставьте разъем в гнездо на обжимочном приспособлении и обожмите его до упора-ограничителя на приспособлении. В результате фиксатор на разъеме встанет на свое место, удерживая кабель в разъеме неподвижным. Контактные ножи разъема врежутся каждый в свой проводник, обеспечивая надежный контакт.

Аналогичным образом можно осуществить монтаж разъемов RJ-11 и RJ-12, используя соответствующий инструмент.

Для монтажа разъема S110 специального обжимочного инструмента не требуется. Сам разъем поставляется в разобранном виде. Кстати, в отличие от "одноразовых" разъемов типа RJ разъем S110 допускает многократную разборку и сборку, что очень удобно. Последовательность действий при монтаже следующая:

  1. Снимите внешнюю изоляцию кабеля на длину примерно 40 мм, разведите в стороны пары проводников, не расплетая их.
  2. Закрепите кабель (в той половинке разъема, на которой нет контактной группы) с помощью пластмассовой стяжки и отрежьте получившийся "хвост".
  3. Аккуратно уложите каждый проводник в органайзер на разъеме. Не расплетайте пару на большую, чем требуется, длину - это ухудшит характеристики всего кабельного соединения. Последовательность укладки пар обычная - синяя-оранжевая-зеленая-коричневая; при этом светлый провод каждой пары укладывается первым.
  4. Острым инструментом (бокорезами или ножом) обрежьте каждый проводник по краю разъема.
  5. Установите на место вторую половинку разъема и руками обожмите ее до защелкивания всех фиксаторов. При этом ножи контактной группы врежутся в проводники, обеспечивая контакт.

Оптоволоконный кабель

Оптоволоконные кабели - наиболее перспективная и обеспечивающая наибольшее быстродействие среда распространения сигналов для локальных сетей и телефонии. В локальных сетях оптоволоконные кабели используются для работы по протоколам ATM и FDDI.

Приспособление для снятия изоляции и обжимки разъема

Оптоволокно, как понятно из его названия, передает сигналы при помощи импульсов светового излучения. В качестве источников света используются полупроводниковые лазеры, а также светодиоды. Оптоволокно подразделяется на одно- и многомодовое.

Одномодовое волокно очень тонкое, его диаметр составляет порядка 10 микрон. Благодаря этому световой импульс, проходя по волокну, реже отражается от его внутренней поверхности, что обеспечивает меньшее затухание. Соответственно одномодовое волокно обеспечивает большую дальность без применения повторителей. Теоретическая пропускная способность одномодового волокна составляет 10 Гбит/с. Его основные недостатки - высокая стоимость и высокая сложность монтажа. Одномодовое волокно применяется в основном в телефонии.

Многомодовое волокно имеет больший диаметр - 50 или 62,5 микрона. Этот тип оптоволокна чаще всего применяется в компьютерных сетях. Большее затухание во многомодовом волокне объясняется более высокой дисперсией света в нем, из-за которой его пропускная способность существенно ниже - теоретически она составляет 2,5 Гбит/с.

Для соединения оптического кабеля с активным оборудованием применяются специальные разъемы. Наиболее распространены разъемы типа SC и ST.

Монтаж соединителей на оптоволоконный кабель - очень ответственная операция, требующая опыта и специального обучения, поэтому не стоит заниматься этим в домашних условиях, не будучи специалистом.

  1. Расчет стоимости оборудования

Стоимость компонентов показана в таблице 4 (по данным интернет магазина «М-видео» в г. Балаково).

Таблица 4 стоимость оборудования

Из таблицы видно, что затраты на проектирование сети не превышают разумных пределов.

  1. Перспективы развития сети

ЛВС представленная в данной работе может развиваться и расширяться. На данном этапе для улучшения локальной сети могут быть предприняты следующие меры:

Подключение дополнительного сетевого сегмента на втором и третьем этажах;

Подключение дополнительных рабочих станций на любом участке сети;

Установка управляемых коммутаторов в наиболее нагруженные сегменты сети (непосредственно в компьютерные классы);

Разгрузка наиболее нагруженных сегментов сети путем разбиения ее на ветви;

Обновление программного обеспечения для повышения качества сети.

Заключение

В ходе работы была разработана локальная вычислительная сеть, состоящая из 38 рабочих станций и 1 сервера на основе технологии Fast Ethernet, самого распространенного типа сети в настоящее время, к достоинствам которого можно отнести простоту настройки, дешевизну компонентов. Звездообразная топология, используемая в проекте, обеспечивает возможность централизованного управления сетью, обеспечивает простоту поиска вышедшего из строя узла. Сеть построена с учетом будущего развития. В качестве операционной системы сервера выбрана Windows Server 2003 R2. Рассчитано необходимое количество сетевого оборудования, его цена приведены данные и расчеты используемого оборудования, затраты на построение составляют 66 539 руб. Составлен подробный план сети, где указаны все характеристики используемых компонентов. Задачи, заданные на проектирование, в целом выполнены. Работа имеет все необходимые данные и расчеты для построения сети.

Список литературы

  1. Актерский, Ю.Е. Сети ЭВМ и телекоммуникации: учебное пособие Ю.Е. Актерский. - СПб.: ПВИРЭ КВ, 2005. - 223 с.
  2. Арчибальд, Р.Д. Управление высокотехнологичными программами и проектами / - М.: ДМК Пресс, 2010. - 464 с.
  3. Балафанов, Е.К. Новые информационные технологии. 30 уроков информатики / Е.К. Балафанов, Б.Б. Бурибаев, А.Б. Даулеткулов. - Алма-Ата.: Патриот, 2004. - 220 с.
  4. Брезгунова, И.В. Аппаратные и программные средства персонального компьютера. Операционная система Microsoft Windows XP / - М: РИВШ, 2011. - 164 с.
  5. Брябрин В.М. Программное обеспечение персональных ЭВМ. - М.: Наука, 1990. 22 с.
  6. Велихов А.В., Строчников К.С., Леонтьев Б.К. Компьютерные сети: Учебное пособие по администрированию локальных и объединенных сетей / - М: Познавательная книга-Пресс, 2004 - 320 с.
  7. Воройский, Ф.С. Информатика. Новый систематизированный толковый словарь-справочник (Введение в современные информационные и телекоммуникационные технологии в терминах и фактах) / Ф.С. Воройский -- 3-е изд., перераб. и доп. -- М.: ФИЗМАТЛИТ, 2003. -- 760 с
  8. Гиляревский, Р.С. Информационный менеджмент. Управление информацией, знаниями, технологией - М.: Профессия, 2009. - 304 с.
  9. Граничин, О.Н. Информационные технологии в управлении / - М.: Бином, 2011. - 336 с.
  10. Гук М. Аппаратные средства локальных сетей. Энциклопедия - СПб.: Питер, 2000. -576с.
  11. Додд, А.З. Мир телекоммуникаций. Обзор технологий и отрасли / А.З. Додд. - М.:Олимп-Бизнес, 2005. - 400 с.
  12. Дэн Холме, Нельсон Рест, Даниэль Рест. Настройка Active Directory. Windows Server 2008. Учебный курс Microsoft / - М: Русская редакция, 2011 - 960 с.
  13. Журин А. Самоучитель работы на компьютере. MS Windows XP. Office XP/ А. Журин. - М.: Корона - Принт, 2009. - 370 с.
  14. Заика, А. Компьютерные сети / А. Заика, М.: Олма-Пресс, 2006. - 448 с.
  15. Закер Крэйг. Планирование и поддержка сетевой инфраструктуры Microsoft Windows Server 2003 /- М: Русская редакция, 2005 - 544 с.
  16. Кангин, В.В. Аппаратные и программные средства систем управления / - М.: Бином. Лаборатория знаний, 2010. - 424 с.

Скачать: У вас нет доступа к скачиванию файлов с нашего сервера.